研究背景
能(neng)(neng)源(yuan)短缺與(yu)環(huan)境污染是(shi)影響國(guo)民經濟可持(chi)續發展的(de)(de)兩大關鍵問(wen)題。利(li)用新型(xing)(xing)可再生(sheng)能(neng)(neng)源(yuan)技術,實現產(chan)能(neng)(neng)升級與(yu)碳排(pai)放(fang)的(de)(de)減(jian)少,逐漸成(cheng)為世界范圍內的(de)(de)廣泛(fan)共識。在眾多可再生(sheng)能(neng)(neng)源(yuan)技術當(dang)中,利(li)用太陽(yang)能(neng)(neng)進行能(neng)(neng)源(yuan)轉化制取太陽(yang)燃(ran)料,是(shi)一件極具挑戰(zhan)性且有前景的(de)(de)能(neng)(neng)源(yuan)技術。CO2與(yu)CH4是(shi)典型(xing)(xing)的(de)(de)溫室氣體及重要(yao)(yao)的(de)(de)含碳資源(yuan),將二者作為碳源(yuan),并在太陽(yang)能(neng)(neng)的(de)(de)輸入條件下(xia),轉化為化學品,既能(neng)(neng)夠(gou)循環(huan)利(li)用CO2實現節能(neng)(neng)減(jian)排(pai),也能(neng)(neng)夠(gou)完成(cheng)太陽(yang)能(neng)(neng)源(yuan)的(de)(de)存儲與(yu)提質增效,符合我國(guo)構(gou)建清潔、高效、安(an)全、可持(chi)續的(de)(de)現代能(neng)(neng)源(yuan)體系發展規劃的(de)(de)要(yao)(yao)求(qiu)。
利(li)用太(tai)陽(yang)能光(guang)(guang)熱(re)化(hua)(hua)(hua)(hua)(hua)(hua)學(xue)(xue)(xue)轉(zhuan)化(hua)(hua)(hua)(hua)(hua)(hua)技術實現(xian)太(tai)陽(yang)燃(ran)料(liao)的(de)生產,其(qi)目前存在的(de)關鍵瓶(ping)頸(jing)問題在于(yu)(yu)微觀反(fan)應(ying)界面的(de)能質(zhi)(zhi)轉(zhuan)化(hua)(hua)(hua)(hua)(hua)(hua)機理(li)(li)不清、全(quan)光(guang)(guang)譜驅(qu)動的(de)物質(zhi)(zhi)活化(hua)(hua)(hua)(hua)(hua)(hua)-重構機理(li)(li)與動力學(xue)(xue)(xue)特性不明、以及適配于(yu)(yu)太(tai)陽(yang)能直接驅(qu)動光(guang)(guang)熱(re)化(hua)(hua)(hua)(hua)(hua)(hua)學(xue)(xue)(xue)轉(zhuan)化(hua)(hua)(hua)(hua)(hua)(hua)的(de)新型(xing)反(fan)應(ying)器設(she)計不足。針(zhen)對(dui)上述(shu)問題,課題組從新型(xing)催化(hua)(hua)(hua)(hua)(hua)(hua)材(cai)料(liao)研(yan)發-反(fan)應(ying)機理(li)(li)與動力學(xue)(xue)(xue)特性解析-高效(xiao)反(fan)應(ying)裝置(zhi)設(she)計優化(hua)(hua)(hua)(hua)(hua)(hua)的(de)角度(du)出(chu)發開展(zhan)(zhan)研(yan)究,旨(zhi)在提升太(tai)陽(yang)能光(guang)(guang)熱(re)化(hua)(hua)(hua)(hua)(hua)(hua)學(xue)(xue)(xue)轉(zhuan)化(hua)(hua)(hua)(hua)(hua)(hua)過(guo)程(cheng)的(de)能量物質(zhi)(zhi)轉(zhuan)化(hua)(hua)(hua)(hua)(hua)(hua)效(xiao)率,從而為甲烷干重整(zheng)制合成氣、CO2加氫還原等重要(yao)能源化(hua)(hua)(hua)(hua)(hua)(hua)工過(guo)程(cheng)的(de)經(jing)濟高效(xiao)轉(zhuan)化(hua)(hua)(hua)(hua)(hua)(hua)與系統安全(quan)穩定運行奠定理(li)(li)論技術基礎。本文重點介紹課題組在太(tai)陽(yang)能光(guang)(guang)熱(re)化(hua)(hua)(hua)(hua)(hua)(hua)學(xue)(xue)(xue)轉(zhuan)化(hua)(hua)(hua)(hua)(hua)(hua)領域的(de)研(yan)究進展(zhan)(zhan)。
研究成果
研究成果1:全光譜“光熱協同”體系能質轉化機理
以往研究(jiu)中,太陽(yang)能(neng)驅動的(de)光熱(re)化(hua)(hua)學反應,多(duo)采用(yong)太陽(yang)能(neng)供熱(re)-熱(re)催(cui)化(hua)(hua)轉化(hua)(hua)的(de)方式,實現CO2、CH4等物質的(de)轉化(hua)(hua),但因未改(gai)變催(cui)化(hua)(hua)反應原(yuan)理,其仍然(ran)面臨著分子(zi)活(huo)化(hua)(hua)困(kun)難、反應溫度高(gao)、能(neng)量轉化(hua)(hua)效率低、催(cui)化(hua)(hua)劑(ji)易積碳失(shi)活(huo)等問題。
對此,課(ke)(ke)題組從“光(guang)熱協同(tong)”催化(hua)(hua)(hua)反應(ying)(ying)(ying)原理出發(fa),構建了Ni/介(jie)孔氧(yang)(yang)化(hua)(hua)(hua)鈦、Pt/介(jie)孔氧(yang)(yang)化(hua)(hua)(hua)鈦、Pt/P25、Ru/CeO2等系列(lie)活(huo)性金屬(shu)(shu)/半(ban)(ban)導體(ti)氧(yang)(yang)化(hua)(hua)(hua)物“光(guang)熱協同(tong)”催化(hua)(hua)(hua)體(ti)系,并探索其(qi)在全(quan)光(guang)譜(pu)太(tai)陽(yang)能(neng)驅動下的(de)微觀(guan)能(neng)質反應(ying)(ying)(ying)轉化(hua)(hua)(hua)機理。課(ke)(ke)題組研究(jiu)表(biao)明半(ban)(ban)導體(ti)載體(ti)的(de)光(guang)響應(ying)(ying)(ying)能(neng)力可(ke)在太(tai)陽(yang)能(neng)照射下激發(fa)電子-空穴;而(er)活(huo)性金屬(shu)(shu)/氧(yang)(yang)化(hua)(hua)(hua)物的(de)金屬(shu)(shu)載體(ti)強(qiang)(qiang)相互作用(yong)可(ke)在拓寬光(guang)譜(pu)響應(ying)(ying)(ying)范圍(wei)的(de)同(tong)時(shi),進一步(bu)強(qiang)(qiang)化(hua)(hua)(hua)電子-空穴分離;光(guang)激發(fa)電子可(ke)通過(guo)界(jie)面遷移至金屬(shu)(shu)活(huo)性位點,形(xing)成富電子結構從而(er)強(qiang)(qiang)化(hua)(hua)(hua)反應(ying)(ying)(ying)物吸附活(huo)化(hua)(hua)(hua)特(te)性,從而(er)大幅(fu)提升(sheng)CO2、CH4催化(hua)(hua)(hua)活(huo)性。與熱化(hua)(hua)(hua)學轉化(hua)(hua)(hua)工藝相比,同(tong)等條件的(de)全(quan)光(guang)譜(pu)光(guang)熱協同(tong)催化(hua)(hua)(hua),可(ke)實現(xian)CO/H2生成速率(lv)提高1.4~1.8倍,CO2/CH4轉化(hua)(hua)(hua)率(lv)提高20%~40%,展現(xian)出很好的(de)應(ying)(ying)(ying)用(yong)前(qian)景(Chemical Engineering Journal,2022,429:132507;Energy Conversion and Management,2022,258:115496;Chemical Engineering Science,2023,274,118710)。
圖(tu)1全光(guang)(guang)譜“光(guang)(guang)熱協(xie)同(tong)”催化體(ti)系開發
為(wei)了強化(hua)(hua)太陽光(guang)譜的(de)(de)(de)(de)利(li)用(yong)效率,課題組還進一步(bu)耦合(he)納米Au顆粒(li)在特(te)(te)定波長下的(de)(de)(de)(de)等(deng)(deng)離激元共振效應(ying),實現(xian)催化(hua)(hua)材料對光(guang)譜響應(ying)能力的(de)(de)(de)(de)進一步(bu)拓(tuo)展;利(li)用(yong)肖特(te)(te)基結(jie)金屬-載體(ti)相互作用(yong)強化(hua)(hua)光(guang)激發(fa)電(dian)(dian)子(zi)(zi)-空穴的(de)(de)(de)(de)有效分離;并利(li)用(yong)全光(guang)譜誘導的(de)(de)(de)(de)光(guang)電(dian)(dian)子(zi)(zi)-熱電(dian)(dian)子(zi)(zi)共同耦合(he)強化(hua)(hua)表(biao)面吸附(fu)物種的(de)(de)(de)(de)解離轉化(hua)(hua)等(deng)(deng)策略(lve),從載流子(zi)(zi)的(de)(de)(de)(de)激發(fa)-遷移-反(fan)應(ying)等(deng)(deng)環節,實現(xian)反(fan)應(ying)物種解離活化(hua)(hua)與H2/CO產率的(de)(de)(de)(de)倍(bei)數(shu)提(ti)升(Journal of Catalysis,2022,413,829-842.)。
圖2載流子(zi)激發-遷(qian)移-反應(ying)強化機(ji)制
考慮到工業實際應(ying)(ying)用(yong)(yong)(yong)中(zhong),CO2/CH4氣(qi)體實際處理通(tong)量較(jiao)大,而(er)在(zai)大通(tong)量處理條(tiao)件下,現有(you)的(de)(de)(de)多數催(cui)化(hua)(hua)(hua)劑在(zai)完(wan)成CH4/CO2重整(zheng)(zheng)制合(he)成氣(qi)反應(ying)(ying)過(guo)程(cheng)中(zhong),又(you)會出現單(dan)程(cheng)轉化(hua)(hua)(hua)率低、積(ji)碳失活(huo)現象加劇等問(wen)(wen)題。課(ke)題組(zu)分析發現其動力學(xue)受限(xian)(轉化(hua)(hua)(hua)率低)的(de)(de)(de)主要(yao)問(wen)(wen)題在(zai)于CH4分解的(de)(de)(de)第一個C-H鍵斷裂困難;而(er)在(zai)穩定性(xing)(xing)方(fang)面,過(guo)度(du)的(de)(de)(de)CH4解離(li)能(neng)力則會導致表(biao)面C*物(wu)種生成累積(ji)并覆蓋活(huo)性(xing)(xing)位點,從而(er)影響金屬位點進一步(bu)活(huo)化(hua)(hua)(hua)反應(ying)(ying)物(wu)。針對上述問(wen)(wen)題,課(ke)題組(zu)采用(yong)(yong)(yong)(1)強(qiang)化(hua)(hua)(hua)金屬位點向C-H反鍵軌道的(de)(de)(de)電子(zi)(zi)捐獻過(guo)程(cheng)(光譜(pu)誘導的(de)(de)(de)光電子(zi)(zi)-熱(re)(re)電子(zi)(zi)共同(tong)促進),同(tong)時(shi)將活(huo)性(xing)(xing)金屬制備至單(dan)原(yuan)子(zi)(zi)尺度(du),利(li)用(yong)(yong)(yong)單(dan)原(yuan)子(zi)(zi)催(cui)化(hua)(hua)(hua)材料(liao)的(de)(de)(de)高表(biao)面能(neng)強(qiang)化(hua)(hua)(hua)反應(ying)(ying)物(wu)CH4的(de)(de)(de)高效(xiao)解離(li),實現CH4/CO2重整(zheng)(zheng)反應(ying)(ying)單(dan)程(cheng)轉化(hua)(hua)(hua)率的(de)(de)(de)提升。(2)利(li)用(yong)(yong)(yong)堿性(xing)(xing)金屬元(yuan)素摻(chan)雜強(qiang)化(hua)(hua)(hua)表(biao)面CO2化(hua)(hua)(hua)學(xue)吸附,從而(er)促進反向歧化(hua)(hua)(hua)反應(ying)(ying)的(de)(de)(de)進行;利(li)用(yong)(yong)(yong)CeO2載體的(de)(de)(de)晶格(ge)氧遷移能(neng)力,促進晶格(ge)氧與(yu)表(biao)面積(ji)碳的(de)(de)(de)氣(qi)化(hua)(hua)(hua)反應(ying)(ying),以(yi)此消(xiao)除催(cui)化(hua)(hua)(hua)劑表(biao)面的(de)(de)(de)積(ji)碳現象,從而(er)提升催(cui)化(hua)(hua)(hua)材料(liao)在(zai)大通(tong)量處理條(tiao)件下的(de)(de)(de)長久穩定運(yun)行能(neng)力。據(ju)此策略,課(ke)題組(zu)報道的(de)(de)(de)Ru基/CeO2光熱(re)(re)協同(tong)催(cui)化(hua)(hua)(hua)材料(liao),獲得(de)了優異的(de)(de)(de)CH4/CO2催(cui)化(hua)(hua)(hua)活(huo)性(xing)(xing)(>1.2 mol·gcat-1·h-1),且性(xing)(xing)能(neng)穩定運(yun)行超100小時(shi)(Nano Energy,2024,123,109401)。
最后,課題組基于CH4/CO2重整(zheng)反(fan)應的研究(jiu)成(cheng)果(guo),也將光(guang)(guang)熱(re)協同(tong)催化(hua)(hua)材料(liao)設(she)計理念,進一步推廣至(zhi)CO2加氫(qing)還原、費(fei)托合成(cheng)等不(bu)同(tong)反(fan)應體系,均大幅提升(sheng)了催化(hua)(hua)反(fan)應活性(xing),顯(xian)示出(chu)光(guang)(guang)熱(re)協同(tong)催化(hua)(hua)在全光(guang)(guang)譜(pu)太(tai)陽能(neng)光(guang)(guang)熱(re)化(hua)(hua)學轉化(hua)(hua)過程(cheng)強化(hua)(hua)的普適(shi)性(xing)(Journal of Catalysis,2024,430,115303;Nano Research,2024,17,7945–7956)。
研究成果2.光熱CO2/CH4反應機理與動力學特性
光(guang)(guang)熱協(xie)同條件(jian)下(xia)的(de)(de)(de)(de)CO2/CH4反(fan)(fan)應(ying)(ying)(ying)機(ji)理(li)(li)方面(mian)(mian),課題組采用原位DRIFTS/XPS/Raman等技術,全面(mian)(mian)剖析(xi)了(le)金屬(shu)/CeO2催化(hua)(hua)(hua)體系下(xia)的(de)(de)(de)(de)CO2/CH4重(zhong)整全反(fan)(fan)應(ying)(ying)(ying)路徑(jing)分(fen)析(xi),以(yi)及高能光(guang)(guang)子(zi)對(dui)特定(ding)基元反(fan)(fan)應(ying)(ying)(ying)步(bu)驟的(de)(de)(de)(de)強化(hua)(hua)(hua)機(ji)制(zhi)。課題組發現反(fan)(fan)應(ying)(ying)(ying)產(chan)物中(zhong)的(de)(de)(de)(de)H2與(yu)(yu)H2O的(de)(de)(de)(de)生(sheng)成(cheng)(cheng)路徑(jing)幾(ji)乎均(jun)由L-H機(ji)理(li)(li)控(kong)制(zhi),高能光(guang)(guang)子(zi)引(yin)入會(hui)通過(guo)強化(hua)(hua)(hua)CH4在Ru位點上解(jie)離的(de)(de)(de)(de)形(xing)式提高表(biao)面(mian)(mian)H*物種(zhong)(zhong)濃度從而(er)顯著(zhu)促進H2的(de)(de)(de)(de)生(sheng)成(cheng)(cheng)路徑(jing)。此(ci)(ci)外,CO的(de)(de)(de)(de)生(sheng)成(cheng)(cheng)路徑(jing)則同時(shi)受(shou)到L-H、MvK與(yu)(yu)E-R三種(zhong)(zhong)機(ji)理(li)(li)控(kong)制(zhi),其中(zhong)L-H與(yu)(yu)E-R機(ji)理(li)(li)同時(shi)被CH4解(jie)離產(chan)生(sheng)的(de)(de)(de)(de)H溢(yi)流(liu)效應(ying)(ying)(ying)與(yu)(yu)CO2吸附作(zuo)用所影(ying)響(xiang),生(sheng)成(cheng)(cheng)COOH*物種(zhong)(zhong)后進一步(bu)生(sheng)成(cheng)(cheng)CO*與(yu)(yu)OH*,因此(ci)(ci)以(yi)L-H或E-R機(ji)理(li)(li)引(yin)起(qi)的(de)(de)(de)(de)CO生(sheng)成(cheng)(cheng)會(hui)降低DRM反(fan)(fan)應(ying)(ying)(ying)的(de)(de)(de)(de)選擇性(Molecular Catalysis,2023,535,112828.;Journal of Colloid and Interface Science,2025,677,863-872)。同時(shi),以(yi)MvK機(ji)理(li)(li)控(kong)制(zhi)的(de)(de)(de)(de)CO生(sheng)成(cheng)(cheng)路徑(jing)會(hui)引(yin)起(qi)Ru-O-Ce與(yu)(yu)Ru-Ov-Ce界面(mian)(mian)結(jie)構的(de)(de)(de)(de)可(ke)逆動態衍變,而(er)高能光(guang)(guang)子(zi)輻照(zhao)會(hui)強化(hua)(hua)(hua)晶格氧(yang)的(de)(de)(de)(de)溢(yi)出(chu)與(yu)(yu)補充過(guo)程,強化(hua)(hua)(hua)催化(hua)(hua)(hua)劑對(dui)CH4/CO2的(de)(de)(de)(de)活化(hua)(hua)(hua)過(guo)程,并通過(guo)強化(hua)(hua)(hua)表(biao)面(mian)(mian)H*物種(zhong)(zhong)的(de)(de)(de)(de)產(chan)生(sheng)而(er)加速所有H*物種(zhong)(zhong)參與(yu)(yu)的(de)(de)(de)(de)基元反(fan)(fan)應(ying)(ying)(ying)步(bu)驟。
圖3光(guang)熱協同催(cui)化二氧化碳干重整基元反應機理
在此基(ji)礎上,課題組提出了反(fan)(fan)(fan)應(ying)(ying)活(huo)化(hua)(hua)能(neng)及活(huo)化(hua)(hua)熵與(yu)入(ru)射(she)高能(neng)光(guang)子的(de)線性(xing)(xing)依(yi)變(bian)關系(xi),并從經典(dian)Langmuir-Hinshelwood模型出發,推導構建出全光(guang)譜(pu)驅動(dong)(dong)的(de)多因素(su)依(yi)賴光(guang)熱(re)(re)協同(tong)催化(hua)(hua)CO2/CH4干(gan)重(zhong)整反(fan)(fan)(fan)應(ying)(ying)動(dong)(dong)力(li)學模型,指出了高能(neng)光(guang)子強(qiang)化(hua)(hua)反(fan)(fan)(fan)應(ying)(ying)倍率隨溫度的(de)指數衰減關系(xi),并揭示光(guang)強(qiang)/光(guang)譜(pu)/溫度/分壓對反(fan)(fan)(fan)應(ying)(ying)特性(xing)(xing)的(de)影響機制(zhi)(AIChE J.2024;e18433)。同(tong)時,課題組也完成了負載型多孔催化(hua)(hua)活(huo)性(xing)(xing)吸收(shou)體(ti)動(dong)(dong)力(li)學特性(xing)(xing)機制(zhi)研究,系(xi)統揭示了吸收(shou)體(ti)結構與(yu)熱(re)(re)質(zhi)傳遞-反(fan)(fan)(fan)應(ying)(ying)的(de)耦(ou)合作用(yong)(yong)機制(zhi),并基(ji)于平推流反(fan)(fan)(fan)應(ying)(ying)模型,采用(yong)(yong)遺傳算法(fa)耦(ou)合非(fei)線性(xing)(xing)最小(xiao)二乘(cheng)算法(fa),獲得了工程(cheng)應(ying)(ying)用(yong)(yong)的(de)多孔活(huo)性(xing)(xing)吸收(shou)體(ti)宏(hong)觀反(fan)(fan)(fan)應(ying)(ying)動(dong)(dong)力(li)學模型,甲烷(wan)轉化(hua)(hua)率平均(jun)相(xiang)對誤差2.6%,二氧化(hua)(hua)碳轉化(hua)(hua)率平均(jun)相(xiang)對誤差4.7%,為太陽能(neng)甲烷(wan)干(gan)重(zhong)整光(guang)熱(re)(re)反(fan)(fan)(fan)應(ying)(ying)器(qi)的(de)設(she)計及優化(hua)(hua)提供動(dong)(dong)力(li)學模型基(ji)礎(Chemical Engineering Science,2021,239:116625.)。
研究成果3:光熱反應器多物理場耦合設計與過程強化研究
聚(ju)光(guang)(guang)(guang)/集熱(re)反(fan)應(ying)器是太陽(yang)能驅動光(guang)(guang)(guang)熱(re)化(hua)學轉(zhuan)(zhuan)化(hua)的(de)關鍵反(fan)應(ying)場所,其結構、性(xing)能設計優化(hua)也是進(jin)一步提(ti)高太陽(yang)能光(guang)(guang)(guang)熱(re)化(hua)學反(fan)應(ying)物質、能量(liang)轉(zhuan)(zhuan)化(hua)效率的(de)重要途(tu)徑。
針對太陽能(neng)(neng)(neng)驅動的(de)光(guang)熱(re)反(fan)應(ying)器(qi)(qi)(qi)內部的(de)多物理場耦合(he)問(wen)題(ti),課題(ti)組通過構(gou)(gou)建MCRT太陽輻(fu)射光(guang)學模型,并(bing)耦合(he)反(fan)應(ying)器(qi)(qi)(qi)內熱(re)質傳遞計(ji)(ji)算流(liu)體動力學與反(fan)應(ying)動力學模型,實現了(le)適用于(yu)太陽能(neng)(neng)(neng)光(guang)熱(re)化學轉(zhuan)化的(de)一(yi)體化光(guang)學反(fan)應(ying)器(qi)(qi)(qi)設計(ji)(ji)方(fang)法構(gou)(gou)建,并(bing)完成了(le)反(fan)應(ying)器(qi)(qi)(qi)結構(gou)(gou)-性能(neng)(neng)(neng)關(guan)聯(lian)機制(zhi)研究。基于(yu)此(ci)方(fang)法,重點分(fen)析了(le)過渡段傾角、長度(du),CPC截取比、接收半角等結構(gou)(gou)參數對反(fan)應(ying)器(qi)(qi)(qi)性能(neng)(neng)(neng)的(de)影(ying)響機制(zhi),并(bing)發現了(le)太陽能(neng)(neng)(neng)光(guang)熱(re)反(fan)應(ying)器(qi)(qi)(qi)區別于(yu)傳統反(fan)應(ying)器(qi)(qi)(qi)的(de)光(guang)子能(neng)(neng)(neng)流(liu)密度(du)分(fen)布與結構(gou)(gou)型式的(de)高(gao)敏感度(du)關(guan)聯(lian)作用,結構(gou)(gou)參數的(de)微小變化,即(ji)會顯著影(ying)響光(guang)子能(neng)(neng)(neng)流(liu)密度(du)分(fen)布在反(fan)應(ying)器(qi)(qi)(qi)內部的(de)分(fen)布特性,從而大幅影(ying)響能(neng)(neng)(neng)量物質的(de)轉(zhuan)化特性(Chemical Engineering Journal,2022,428:131441.)。
為了實(shi)現光(guang)熱化(hua)學反(fan)(fan)應器性(xing)(xing)(xing)(xing)能(neng)(neng)的(de)進一步提(ti)升(sheng)(sheng),課題組也針(zhen)對反(fan)(fan)應器內部的(de)能(neng)(neng)流(liu)供給(gei)與(yu)反(fan)(fan)應需求匹(pi)配(pei)(pei)特性(xing)(xing)(xing)(xing),提(ti)出(chu)了系(xi)(xi)(xi)列(lie)反(fan)(fan)應特性(xing)(xing)(xing)(xing)的(de)過(guo)程(cheng)強(qiang)化(hua)調(diao)控策略(lve)。針(zhen)對聚(ju)光(guang)固載型腔體式反(fan)(fan)應器,提(ti)出(chu)梯級(ji)孔(kong)變隙耦合(he)變孔(kong)徑結(jie)構(gou),利用(yong)孔(kong)徑“大(da)小漸變”結(jie)構(gou)的(de)輻射“體吸(xi)(xi)收(shou)效(xiao)(xiao)應”與(yu)孔(kong)隙率(lv)(lv)“遞(di)增結(jie)構(gou)”的(de)“局部對流(liu)/導熱強(qiang)化(hua)”效(xiao)(xiao)應,改(gai)善輻射吸(xi)(xi)收(shou)以(yi)及能(neng)(neng)量(liang)(liang)轉(zhuan)化(hua)效(xiao)(xiao)率(lv)(lv),實(shi)現反(fan)(fan)應器集熱效(xiao)(xiao)率(lv)(lv)提(ti)升(sheng)(sheng)。通過(guo)改(gai)進多孔(kong)活性(xing)(xing)(xing)(xing)吸(xi)(xi)收(shou)體幾何結(jie)構(gou)及物料進氣(qi)方式(圓環柱形(xing)至圓柱形(xing)),實(shi)現反(fan)(fan)應物料流(liu)動方式的(de)定向設計(ji),延(yan)長停留時間(jian),大(da)幅(fu)增加CH4/CO2轉(zhuan)化(hua)率(lv)(lv),及CO/H2產率(lv)(lv)(CO2轉(zhuan)化(hua)率(lv)(lv)27.21%增至79.4%,CO產率(lv)(lv)12.79 mol/h增至35.44 mol/h)。針(zhen)對太(tai)(tai)陽(yang)(yang)能(neng)(neng)光(guang)熱化(hua)學轉(zhuan)化(hua)系(xi)(xi)(xi)統的(de)非(fei)穩(wen)態變工況能(neng)(neng)量(liang)(liang)輸(shu)入(ru)(ru)特性(xing)(xing)(xing)(xing),提(ti)出(chu)動態物料供給(gei)調(diao)控策略(lve),在實(shi)現輸(shu)入(ru)(ru)能(neng)(neng)流(liu)最大(da)化(hua)的(de)同時,保證(zheng)輸(shu)入(ru)(ru)能(neng)(neng)量(liang)(liang)與(yu)物料供給(gei)的(de)時間(jian)分布特性(xing)(xing)(xing)(xing)匹(pi)配(pei)(pei),進一步提(ti)升(sheng)(sheng)非(fei)穩(wen)態變工況太(tai)(tai)陽(yang)(yang)能(neng)(neng)光(guang)熱化(hua)學轉(zhuan)化(hua)系(xi)(xi)(xi)統的(de)物質-能(neng)(neng)量(liang)(liang)轉(zhuan)化(hua)效(xiao)(xiao)率(lv)(lv)(太(tai)(tai)陽(yang)(yang)能(neng)(neng)-化(hua)學能(neng)(neng)轉(zhuan)化(hua)效(xiao)(xiao)率(lv)(lv)最大(da)增幅(fu)可接近100%,Energy,2018,164:937-950.)。太(tai)(tai)陽(yang)(yang)能(neng)(neng)光(guang)熱化(hua)學轉(zhuan)換過(guo)程(cheng)中能(neng)(neng)量(liang)(liang)傳遞(di)與(yu)轉(zhuan)化(hua)調(diao)控策略(lve)的(de)發展,為保證(zheng)太(tai)(tai)陽(yang)(yang)能(neng)(neng)到化(hua)學能(neng)(neng)的(de)經濟高效(xiao)(xiao)轉(zhuan)化(hua)與(yu)系(xi)(xi)(xi)統的(de)安全穩(wen)定運行提(ti)供重要理論支撐。
圖(tu)4一(yi)體化(hua)光(guang)熱反應器(qi)設計(ji)方法及太陽能光(guang)熱化(hua)學轉(zhuan)換(huan)能量轉(zhuan)化(hua)調控策略
總結與展望
課(ke)題(ti)組近(jin)年來主要研(yan)究重(zhong)點(dian)均集中在太(tai)陽(yang)(yang)能(neng)驅(qu)動(dong)的(de)(de)光(guang)熱(re)(re)化(hua)(hua)(hua)學反應(ying)的(de)(de)能(neng)質(zhi)轉化(hua)(hua)(hua)機理與(yu)催化(hua)(hua)(hua)體系構筑(zhu)、全光(guang)譜驅(qu)動(dong)的(de)(de)光(guang)熱(re)(re)協同反應(ying)動(dong)力學特(te)性研(yan)究、以(yi)及(ji)(ji)太(tai)陽(yang)(yang)能(neng)直接驅(qu)動(dong)的(de)(de)新型光(guang)熱(re)(re)化(hua)(hua)(hua)學反應(ying)裝置設(she)計與(yu)優化(hua)(hua)(hua)等方(fang)面,有關的(de)(de)反應(ying)體系涉及(ji)(ji)到CO2/CH4干重(zhong)整制(zhi)合成氣、CO2加(jia)氫還原制(zhi)備C1化(hua)(hua)(hua)學品、太(tai)陽(yang)(yang)能(neng)光(guang)熱(re)(re)化(hua)(hua)(hua)學制(zhi)氫等。這其中,進一步(bu)的(de)(de)工作難(nan)點(dian)與(yu)重(zhong)點(dian)則是在實驗室研(yan)究基礎之上,將太(tai)陽(yang)(yang)能(neng)光(guang)熱(re)(re)化(hua)(hua)(hua)學轉化(hua)(hua)(hua)體系放大至(zhi)小(xiao)試(shi)乃(nai)至(zhi)中試(shi)示范(fan)規模,并實現較長時間的(de)(de)穩(wen)定運行。課(ke)題(ti)組也(ye)歡迎(ying)各位同仁不吝(lin)指導、相(xiang)互交(jiao)流(liu),促進相(xiang)關領(ling)域的(de)(de)進一步(bu)發展。
論文信息
[1]Tao Xie,Kai-Di Xu;Ya-Ling He;Kun Wang,Bo-Lun Yang.Thermodynamic and kinetic analysis of an integrated solar thermochemical energy storage system for dry-reforming of methane.Energy,2018,164:937-950.
[2]Tao Xie,Kai-Di Xu;Bo-Lun Yang;Ya-Ling He.Effect of pore size and porosity distribution on radiation absorption and thermal performance of porous solar energy absorber.Science China Technological Sciences,2019,62:2213-2225.
[3]Tao Xie,Hao-Ye Zheng,Kai-Di Xu,Zhen-Yu Zhang,Bo-Lun Yang,Bo Yu.High performance Ni-based porous catalytically activated absorbers and establishment of kinetic model for complex solar methane dry reforming reaction system.Chemical Engineering Science,2021,239:116625.(DOI:10.1016/j.ces.2021.116625;WOS:000649712400002)
[4]Hao-Ye Zheng,Zhen-Yu Zhang,Kai-Di Xu,Sheng Wang,Bo Yu,Tao Xie.Analysis of structure-induced performance in photothermal methane dry reforming reactor with coupled optics-CFD modeling.Chemical Engineering Journal,2022,428:131441.
[5]Tao Xie,Zhen-Yu Zhang,Hao-Ye Zheng,Kai-Di Xu,Zhun Hu,Yu Lei.Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst.Chemical Engineering Journal,2022,429:132507.
[6]Zhen-Yu Zhang,Tao Zhang,Wen-Peng Liang,Pan-Wei Bai,Hao-Ye Zheng,Yu Lei,Zhun Hu,Tao Xie*.Promoted solar-driven methane dry reforming of methane with Pt/mesoporous-TiO2 photo-thermal synergistic catalyst:performance and mechanism study.Energy Conversion and Management,2022,258 115496.
[7]Zhen-Yu Zhang,Tao Zhang,Rui-Kun Wang,Bo Yu,Zi-Yu Tang,Hao-Ye Zheng,Dan He,Tao Xie1*,Zhun Hu2*.Photo-enhanced dry reforming of methane over Pt-Au/P25 composite catalyst by coupling plasmonic effect.Journal of Catalysis,2022,413,829-842.
[8]Zhen-Yu Zhang,Ting Li,Ji-Long Yao,Tao Xie*,Qi Xiao.Mechanism and kinetic characteristics of photo-thermal dry reforming of methane on Pt/mesoporous-TiO2 catalyst.Molecular Catalysis,2023,535,112828.
[9]Tao Xie*,Zhen-Yu Zhang,Hao-Ye Zheng,Bo Yu,Qi Xiao.Performance optimization of a cavity type concentrated solar reactor for methane dry reforming reaction with coupled optics-CFD modeling.Chemical Engineering Science,2023,275,118737.
[10]Zhen-Yu Zhang,Ting Li,Zi-Yu Tang,Dan He,Jun-Jie Tian,Jia-You Chen,Tao Xie*.Deep insight of the influence of Pt loading content with catalytic activity on light-assisted dry reforming of methane.Chemical Engineering Science,2023,274,118710.
[11]Ji-Long Yao,Hao-Ye Zheng,Pan-Wei Bai,Zhen-Yu Zhang,Ting Li,Tao Xie*.Design and optimization of solar-dish volumetric reactor for methane dry reforming process with three-dimensional optics-CFD method.Energy Conversion and Management,2023,277,116663.
[12]Zhen-Yu Zhang,Ting Li,Xia-Li Sun,De-Cun Luo,Ji-Long Yao,Gui-Dong Yang,Tao Xie*.Efficient photo-thermal catalytic CO2 methanation and dynamic structural evolution over Ru/Mg-CeO2 single-atom catalyst.Journal of Catalysis,2024,430,115303.
[13]Zhen-Yu Zhang,Zhen-Xiong Huang,Xi-Yang Yu,Lei Chen,Hong-Hui Ou,Zi-Yu Tang,Ting Li,Bo-Yu Xu,Ya-Ling He,Tao Xie*.Photo-thermal coupled single-atom catalysis boosting dry reforming of methane beyond thermodynamic limits over high equivalent flow.Nano Energy,2024,123,109401.
[14]Ji-Long Yao,Zhen-Yu Zhang,Ting Li,Pan-Wei Bai,Wen-Peng Liang,Tao Xie*.Establishment of light-dependent photo-thermal kinetic model for MDR and performance optimization in a cavity reactor.AIChE J.2024;e18433.
[15]Ting Li,Zhen-Yu Zhang,De-Cun Luo,Bo-Yu Xu,Rong-Jiang Zhang,Ji-Long Yao,Dan Li,Tao Xie*.Highly efficient photo-thermal synergistic catalysis of CO2 methanation over La1?xCexNiO3 perovskite-catalyst.Nano Research,2024,17,7945–7956.
[16]Zhen-Yu Zhang,Tao Xie*.In situ DRIFTs-based comprehensive reaction mechanism of photo-thermal synergetic catalysis for dry reforming of methane over Ru-CeO2 catalyst.Journal of Colloid and Interface Science,2025,677,863-872.
作者介紹
謝濤,西安交(jiao)通大(da)學(xue)(xue)(xue)化(hua)學(xue)(xue)(xue)工(gong)(gong)(gong)程與技術(shu)(shu)學(xue)(xue)(xue)院,副(fu)教(jiao)授,博(bo)士生導師。2005-2009年,就讀西安交(jiao)通大(da)學(xue)(xue)(xue),獲(huo)學(xue)(xue)(xue)士學(xue)(xue)(xue)位。2009-2015年,就讀西安交(jiao)通大(da)學(xue)(xue)(xue),獲(huo)動力(li)工(gong)(gong)(gong)程及(ji)(ji)工(gong)(gong)(gong)程熱(re)物理博(bo)士學(xue)(xue)(xue)位。2015年博(bo)士畢業(ye),進入(ru)化(hua)學(xue)(xue)(xue)工(gong)(gong)(gong)程與技術(shu)(shu)學(xue)(xue)(xue)院,開展太(tai)陽能光-熱(re)-化(hua)學(xue)(xue)(xue)轉化(hua)過程以(yi)及(ji)(ji)熱(re)質(zhi)傳遞(di)轉化(hua)規(gui)律(lv)的(de)理論(lun)與實驗相(xiang)關研究(jiu)工(gong)(gong)(gong)作。2016-2017年,在(zai)美國(guo)圣路易斯(si)華盛頓大(da)學(xue)(xue)(xue)訪學(xue)(xue)(xue)交(jiao)流(liu)。現任工(gong)(gong)(gong)業(ye)催化(hua)研究(jiu)所副(fu)所長,獲(huo)唐仲英(ying)基金會(hui)仲英(ying)青(qing)年學(xue)(xue)(xue)者,陜(shan)西省(sheng)優秀博(bo)士學(xue)(xue)(xue)位論(lun)文(wen),吳仲華優秀研究(jiu)生獎等榮譽。以(yi)項目(mu)負責人,主持國(guo)家(jia)(jia)重點研發(fa)計(ji)劃項目(mu)子課題1項,國(guo)家(jia)(jia)自然科學(xue)(xue)(xue)基金面上(shang)/青(qing)年項目(mu)3項,其(qi)他軍工(gong)(gong)(gong)/省(sheng)部(bu)級項目(mu)7項;在(zai)Nano Energy、AIChE Journal、Energy Conversion and Management、Chemical Engineering Journal、Journal of Catalysis、Environmental Science&Technology等國(guo)際SCI期刊發(fa)表學(xue)(xue)(xue)術(shu)(shu)論(lun)文(wen)四(si)十余篇,其(qi)中ESI高(gao)被引論(lun)文(wen)2篇,單篇最高(gao)SCI他引次數264。申請(qing)發(fa)明專利6件(jian),授權4件(jian)。受邀在(zai)國(guo)內外學(xue)(xue)(xue)術(shu)(shu)會(hui)議(yi)做學(xue)(xue)(xue)術(shu)(shu)報告5次。
聯系方式:xietao_xjtu@xjtu.edu.cn