无码日韩精品一区二区免费暖暖,久久精品国产精品亚洲,开心播播网,女人床技48动态图,国产精品无码免费专区午夜

SCO2布雷頓循環在光熱發電中如何優化提高效率?
發布者:xylona | 來源:汽輪機技術 | 0評論 | 8058查看 | 2024-06-28 10:06:54    

摘要:由于(yu)化石能源的(de)(de)消耗(hao)以及(ji)環(huan)(huan)境的(de)(de)惡化,各國都開始尋找(zhao)新(xin)(xin)(xin)型(xing)發(fa)電(dian)(dian)(dian)技術(shu)。SCO2布雷(lei)頓(dun)(dun)(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)身為新(xin)(xin)(xin)興的(de)(de)技術(shu),具有臨界參數(shu)易達(da)到(dao)、體積小、重量輕(qing)、循(xun)(xun)(xun)(xun)環(huan)(huan)效(xiao)率高等(deng)優(you)點。將布雷(lei)頓(dun)(dun)(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)工質進(jin)行(xing)(xing)(xing)比(bi)較(jiao),得(de)到(dao)SCO2是(shi)最(zui)適合布雷(lei)頓(dun)(dun)(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)的(de)(de)。之后(hou)將SCO2布雷(lei)頓(dun)(dun)(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)與朗肯循(xun)(xun)(xun)(xun)環(huan)(huan)進(jin)行(xing)(xing)(xing)比(bi)較(jiao),得(de)到(dao)SCO2布雷(lei)頓(dun)(dun)(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)與光(guang)熱(re)(re)(re)發(fa)電(dian)(dian)(dian)相結合的(de)(de)效(xiao)率更高。基于(yu)光(guang)熱(re)(re)(re)發(fa)電(dian)(dian)(dian)系統,對(dui)SCO2布雷(lei)頓(dun)(dun)(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)結構進(jin)行(xing)(xing)(xing)了(le)分析比(bi)較(jiao),得(de)到(dao)再壓縮循(xun)(xun)(xun)(xun)環(huan)(huan)既簡單又高效(xiao),適合光(guang)熱(re)(re)(re)發(fa)電(dian)(dian)(dian)系統。接著在光(guang)熱(re)(re)(re)發(fa)電(dian)(dian)(dian)系統中對(dui)布雷(lei)頓(dun)(dun)(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)關鍵(jian)參數(shu)進(jin)行(xing)(xing)(xing)優(you)化,從而使循(xun)(xun)(xun)(xun)環(huan)(huan)效(xiao)率達(da)到(dao)最(zui)佳。最(zui)后(hou)研究了(le)SCO2布雷(lei)頓(dun)(dun)(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)的(de)(de)設備,包括向心(xin)透平、離心(xin)式壓縮機(ji)和印刷電(dian)(dian)(dian)路板式換熱(re)(re)(re)器,其中印刷電(dian)(dian)(dian)路板式換熱(re)(re)(re)器作為一種新(xin)(xin)(xin)型(xing)換熱(re)(re)(re)器,因為它(ta)的(de)(de)緊(jin)湊高效(xiao)性等(deng)特點常被用于(yu)SCO2布雷(lei)頓(dun)(dun)(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)。


01


前言


近年來,隨著環境(jing)的(de)污(wu)染以及(ji)化(hua)石能(neng)(neng)(neng)源的(de)消耗,各國都在努(nu)力尋找更(geng)加節能(neng)(neng)(neng)高(gao)(gao)效的(de)新(xin)能(neng)(neng)(neng)源。其中二氧(yang)(yang)化(hua)碳(CO2)極為突出,它具有臨(lin)界(jie)參數易達到(dao)(臨(lin)界(jie)溫度30.98℃,臨(lin)界(jie)壓力7.38MPa)、安全無毒(du)、比熱(re)(re)容大、能(neng)(neng)(neng)量(liang)(liang)(liang)密度高(gao)(gao)、儲量(liang)(liang)(liang)豐富、易獲取等優(you)(you)點(dian)。而以超臨(lin)界(jie)二氧(yang)(yang)化(hua)碳(SCO2)作為介質(zhi)的(de)布(bu)(bu)雷頓(dun)循(xun)環,具有占地面積小、設備簡單(dan)重(zhong)量(liang)(liang)(liang)輕、循(xun)環熱(re)(re)效率高(gao)(gao)等優(you)(you)點(dian),受到(dao)了大家廣泛(fan)研究(jiu)。SCO2布(bu)(bu)雷頓(dun)循(xun)環與太陽(yang)(yang)能(neng)(neng)(neng)熱(re)(re)發(fa)電(dian)相結合(he),可以提高(gao)(gao)太陽(yang)(yang)能(neng)(neng)(neng)轉化(hua)效率,所以目前來說,光熱(re)(re)發(fa)電(dian)與SCO2布(bu)(bu)雷頓(dun)循(xun)環相結合(he)必將成(cheng)為未(wei)來的(de)發(fa)展趨勢(shi)。


本(ben)文將(jiang)從(cong)以下(xia)5部分進(jin)行(xing)介(jie)紹。第(di)(di)(di)1部分將(jiang)應用于布(bu)(bu)(bu)雷(lei)(lei)(lei)頓(dun)(dun)循(xun)(xun)環(huan)(huan)的介(jie)質(zhi)進(jin)行(xing)比(bi)(bi)較(jiao)(jiao),得到SCO2是最適合布(bu)(bu)(bu)雷(lei)(lei)(lei)頓(dun)(dun)循(xun)(xun)環(huan)(huan)的介(jie)質(zhi);第(di)(di)(di)2部分基于光(guang)熱(re)發(fa)電(dian)系統(tong)比(bi)(bi)較(jiao)(jiao)了(le)SCO2布(bu)(bu)(bu)雷(lei)(lei)(lei)頓(dun)(dun)循(xun)(xun)環(huan)(huan)和水蒸氣朗肯循(xun)(xun)環(huan)(huan)、SCO2朗肯循(xun)(xun)環(huan)(huan),得到光(guang)熱(re)發(fa)電(dian)與(yu)SCO2布(bu)(bu)(bu)雷(lei)(lei)(lei)頓(dun)(dun)循(xun)(xun)環(huan)(huan)結(jie)合效率(lv)更高(gao);第(di)(di)(di)3部分基于光(guang)熱(re)發(fa)電(dian)系統(tong)對(dui)(dui)SCO2布(bu)(bu)(bu)雷(lei)(lei)(lei)頓(dun)(dun)循(xun)(xun)環(huan)(huan)結(jie)構進(jin)行(xing)比(bi)(bi)較(jiao)(jiao),得到再壓(ya)縮循(xun)(xun)環(huan)(huan)、中(zhong)冷再壓(ya)縮循(xun)(xun)環(huan)(huan)和中(zhong)冷再熱(re)再壓(ya)縮循(xun)(xun)環(huan)(huan)效率(lv)較(jiao)(jiao)高(gao),是比(bi)(bi)較(jiao)(jiao)適合光(guang)熱(re)發(fa)電(dian)系統(tong)的;第(di)(di)(di)4部分對(dui)(dui)基于光(guang)熱(re)發(fa)電(dian)系統(tong)的SCO2布(bu)(bu)(bu)雷(lei)(lei)(lei)頓(dun)(dun)循(xun)(xun)環(huan)(huan)的關鍵參數進(jin)行(xing)了(le)優(you)化;第(di)(di)(di)5部分對(dui)(dui)SCO2布(bu)(bu)(bu)雷(lei)(lei)(lei)頓(dun)(dun)循(xun)(xun)環(huan)(huan)的設(she)備進(jin)行(xing)研究,主要包括透平、壓(ya)縮機和換熱(re)器。


02


布雷頓循環介質


image.png

圖1簡單循環


布雷頓循環是一種以氣體為工質的循環,如(ru)圖1所示,經過定熵(shang)壓(ya)縮、定壓(ya)加熱(re)、定熵(shang)膨脹、定壓(ya)放熱(re)等(deng)4個過程來實現能(neng)量的高效轉化(hua)。


常見的布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)有(you):SCO2布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)、He布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)和(he)空(kong)氣(qi)布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)。與(yu)后兩(liang)者相比(bi),SCO2布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)的優勢在(zai)于SCO2在(zai)650℃就可(ke)(ke)以(yi)達到He在(zai)850℃的效(xiao)(xiao)率(lv)(lv),并(bing)提(ti)供了選擇(ze)材料(liao)的靈活性[1],與(yu)空(kong)氣(qi)布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)相比(bi)大大減少了壓(ya)(ya)縮功,且(qie)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv)可(ke)(ke)達到60%,比(bi)空(kong)氣(qi)布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)提(ti)高了10%[2]。布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)作為(wei)一種(zhong)以(yi)氣(qi)體為(wei)工(gong)質的循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan),一般用(yong)于制冷劑的氣(qi)體可(ke)(ke)以(yi)用(yong)做(zuo)布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)的工(gong)質,為(wei)此也(ye)有(you)選擇(ze)一些(xie)惰(duo)性氣(qi)體來(lai)進(jin)(jin)行布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv)的比(bi)較。Uusitalo等人[3]選用(yong)了CO2、C2H6、C2H4、R116等氣(qi)體來(lai)進(jin)(jin)行布(bu)(bu)(bu)雷(lei)頓(dun)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)模擬,選擇(ze)它(ta)們主要是基于流(liu)體的臨(lin)界溫度略(lve)低于或(huo)接近壓(ya)(ya)縮機入口(kou)溫度,以(yi)確保超臨(lin)界流(liu)體能貫穿整(zheng)個循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan),最后得(de)(de)到以(yi)CO2流(liu)體為(wei)工(gong)質的中冷再壓(ya)(ya)縮循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)具有(you)最優效(xiao)(xiao)率(lv)(lv)。Coco-Enríquez L等人[4]選擇(ze)了CO2、N2、Xe、CH4、C2H6等5種(zhong)氣(qi)體進(jin)(jin)行效(xiao)(xiao)率(lv)(lv)比(bi)較,得(de)(de)到N2的循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv)最高,CO2次之,但在(zai)提(ti)高透平入口(kou)壓(ya)(ya)力時只有(you)CO2可(ke)(ke)使循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv)升高,其它(ta)工(gong)質均(jun)無(wu)變化。


通過(guo)在布雷頓循(xun)環(huan)中對這些工質進行(xing)效率比(bi)較,得到(dao)與大部分氣(qi)(qi)體(ti)工質相比(bi),CO2循(xun)環(huan)效率最高,且它是(shi)(shi)一種綠色安(an)全無(wu)毒的氣(qi)(qi)體(ti),是(shi)(shi)其(qi)它氣(qi)(qi)體(ti)無(wu)法比(bi)擬(ni)的,所以目前布雷頓循(xun)環(huan)的工質還是(shi)(shi)CO2最佳,基于此興(xing)起了對SCO2布雷頓循(xun)環(huan)的研(yan)究。


03


光熱發電中的SCO布雷頓循環與朗肯循環比較


隨著SCO2布雷頓循(xun)(xun)環(huan)(huan)的(de)興起,人們不免將它與之前的(de)循(xun)(xun)環(huan)(huan)進行比(bi)較。其(qi)中最突出的(de)就是朗肯循(xun)(xun)環(huan)(huan),如(ru)圖2所(suo)示(shi),由鍋爐開始進行了(le)定壓吸(xi)熱(re)、定熵(shang)(shang)膨脹、定壓放熱(re)和定熵(shang)(shang)壓縮等4個過程的(de)簡單動力循(xun)(xun)環(huan)(huan)。


image.png

圖2朗肯循環


光(guang)熱(re)(re)電(dian)站目前大部分都(dou)是(shi)采用的(de)(de)(de)水(shui)蒸(zheng)(zheng)(zheng)氣朗(lang)肯循(xun)(xun)(xun)環(huan)(huan),與(yu)之相比(bi)(bi),SCO2布雷頓循(xun)(xun)(xun)環(huan)(huan)不僅可以產(chan)生更(geng)高(gao)的(de)(de)(de)循(xun)(xun)(xun)環(huan)(huan)熱(re)(re)效(xiao)(xiao)(xiao)率(lv),重量體積還(huan)會更(geng)小[5],與(yu)現有的(de)(de)(de)水(shui)蒸(zheng)(zheng)(zheng)氣朗(lang)肯循(xun)(xun)(xun)環(huan)(huan)相比(bi)(bi)較,不僅發電(dian)效(xiao)(xiao)(xiao)率(lv)提(ti)高(gao)了(le)6.2%~7.4%,電(dian)力(li)成本(ben)還(huan)降低(di)了(le)7.8%~13.6%[6]。Hanak等人[7]得到(dao)(dao)(dao)SCO2布雷頓循(xun)(xun)(xun)環(huan)(huan)在透(tou)平(ping)入口(kou)溫(wen)度593.3℃,入口(kou)壓(ya)(ya)(ya)力(li)24.23MPa下的(de)(de)(de)凈(jing)效(xiao)(xiao)(xiao)率(lv)損失比(bi)(bi)傳統(tong)(tong)水(shui)蒸(zheng)(zheng)(zheng)氣朗(lang)肯循(xun)(xun)(xun)環(huan)(huan)少(shao)1%HHV,若進一步提(ti)高(gao)溫(wen)度和壓(ya)(ya)(ya)力(li)則凈(jing)效(xiao)(xiao)(xiao)率(lv)損失會更(geng)少(shao),且成本(ben)低(di)27%。曹春(chun)輝[8]建立了(le)SCO2再(zai)壓(ya)(ya)(ya)縮布雷頓循(xun)(xun)(xun)環(huan)(huan)塔式光(guang)熱(re)(re)發電(dian)系統(tong)(tong)模(mo)型,得到(dao)(dao)(dao)再(zai)壓(ya)(ya)(ya)縮循(xun)(xun)(xun)環(huan)(huan)的(de)(de)(de)發電(dian)系統(tong)(tong)熱(re)(re)效(xiao)(xiao)(xiao)率(lv)和總熱(re)(re)效(xiao)(xiao)(xiao)率(lv)分別為43.69%、25.95%,而(er)使用水(shui)蒸(zheng)(zheng)(zheng)氣朗(lang)肯循(xun)(xun)(xun)環(huan)(huan)時的(de)(de)(de)兩(liang)個(ge)效(xiao)(xiao)(xiao)率(lv)分別為37.85%、22.89%,可以明顯看出(chu)光(guang)熱(re)(re)發電(dian)系統(tong)(tong)使用再(zai)壓(ya)(ya)(ya)縮循(xun)(xun)(xun)環(huan)(huan)的(de)(de)(de)效(xiao)(xiao)(xiao)率(lv)要高(gao)。如(ru)表1,吳毅[9]和楊雪[10]也都(dou)將SCO2再(zai)壓(ya)(ya)(ya)縮布雷頓循(xun)(xun)(xun)環(huan)(huan)與(yu)水(shui)蒸(zheng)(zheng)(zheng)氣朗(lang)肯循(xun)(xun)(xun)環(huan)(huan)進行(xing)了(le)比(bi)(bi)較,最終得到(dao)(dao)(dao)SCO2布雷頓循(xun)(xun)(xun)環(huan)(huan)與(yu)光(guang)熱(re)(re)電(dian)站相結合的(de)(de)(de)效(xiao)(xiao)(xiao)率(lv)更(geng)高(gao)。


image.png

表1水蒸氣循環和SCO 2循環效率比較


前(qian)面得(de)(de)到(dao)(dao)SCO2作為一種優秀工(gong)(gong)質(zhi),同樣(yang)可以(yi)(yi)用(yong)于朗肯(ken)循(xun)環(huan)(huan)(huan)(huan)(huan),為了(le)(le)得(de)(de)到(dao)(dao)更適合光熱(re)電(dian)站的(de)循(xun)環(huan)(huan)(huan)(huan)(huan),同樣(yang)將(jiang)SCO2朗肯(ken)循(xun)環(huan)(huan)(huan)(huan)(huan)和SCO2布(bu)(bu)雷(lei)頓(dun)(dun)循(xun)環(huan)(huan)(huan)(huan)(huan)的(de)循(xun)環(huan)(huan)(huan)(huan)(huan)效(xiao)率(lv)(lv)進行比較(jiao)。已(yi)知SCO2布(bu)(bu)雷(lei)頓(dun)(dun)循(xun)環(huan)(huan)(huan)(huan)(huan),當透(tou)平(ping)入口(kou)溫度在700℃的(de)簡(jian)單(dan)循(xun)環(huan)(huan)(huan)(huan)(huan)效(xiao)率(lv)(lv)大(da)(da)于44%,而更先進的(de)再壓(ya)縮循(xun)環(huan)(huan)(huan)(huan)(huan)效(xiao)率(lv)(lv)可達到(dao)(dao)51%[11]。而以(yi)(yi)SCO2為工(gong)(gong)質(zhi)的(de)太(tai)陽能(neng)朗肯(ken)循(xun)環(huan)(huan)(huan)(huan)(huan)系統(tong)的(de)電(dian)能(neng)效(xiao)率(lv)(lv)和熱(re)效(xiao)率(lv)(lv)為11.4%和36.2%[12],在最優配置(zhi)下的(de)最大(da)(da)循(xun)環(huan)(huan)(huan)(huan)(huan)熱(re)效(xiao)率(lv)(lv)才能(neng)達到(dao)(dao)40%[13]。張(zhang)玉偉[14]搭(da)建了(le)(le)SCO2太(tai)陽能(neng)朗肯(ken)循(xun)環(huan)(huan)(huan)(huan)(huan)系統(tong),得(de)(de)到(dao)(dao)朗肯(ken)循(xun)環(huan)(huan)(huan)(huan)(huan)效(xiao)率(lv)(lv)會隨著時間(jian)產生(sheng)較(jiao)大(da)(da)的(de)波動,在中(zhong)午時循(xun)環(huan)(huan)(huan)(huan)(huan)效(xiao)率(lv)(lv)最高,可達到(dao)(dao)21.6%,在整個(ge)時間(jian)段的(de)平(ping)均循(xun)環(huan)(huan)(huan)(huan)(huan)效(xiao)率(lv)(lv)可達到(dao)(dao)約14%。向沖[15]同樣(yang)搭(da)建了(le)(le)SCO2太(tai)陽能(neng)朗肯(ken)循(xun)環(huan)(huan)(huan)(huan)(huan)系統(tong),得(de)(de)到(dao)(dao)在典型工(gong)(gong)況下(透(tou)平(ping)壓(ya)力從(cong)10MPa降到(dao)(dao)6.5MPa,加熱(re)溫度為100℃)的(de)循(xun)環(huan)(huan)(huan)(huan)(huan)總效(xiao)率(lv)(lv)為20.58%。從(cong)上述數據中(zhong)均可以(yi)(yi)明顯看出,SCO2布(bu)(bu)雷(lei)頓(dun)(dun)循(xun)環(huan)(huan)(huan)(huan)(huan)的(de)效(xiao)率(lv)(lv)明顯高于SCO2朗肯(ken)循(xun)環(huan)(huan)(huan)(huan)(huan)。


將SCO2布(bu)(bu)(bu)雷(lei)(lei)頓循(xun)環與(yu)水蒸氣朗(lang)肯(ken)循(xun)環和SCO2朗(lang)肯(ken)循(xun)環均進行了(le)比(bi)較(jiao)(jiao),都證明(ming)了(le)SCO2布(bu)(bu)(bu)雷(lei)(lei)頓循(xun)環效(xiao)率(lv)更高,所以(yi)SCO2布(bu)(bu)(bu)雷(lei)(lei)頓循(xun)環與(yu)光熱(re)發電系統相結合(he)存在優(you)勢,既(ji)可以(yi)提高太陽能轉化效(xiao)率(lv),又能提高發電效(xiao)率(lv),是一種較(jiao)(jiao)優(you)的循(xun)環。


04


基于光熱發電系統的SCO布雷頓循環結構


隨著SCO2布雷(lei)頓循環(huan)(huan)的(de)興起(qi),簡單循環(huan)(huan)由于換熱(re)不均(jun)會造成回熱(re)器的(de)“夾點”問(wen)題(ti),從而(er)影響循環(huan)(huan)效率,為解決這一問(wen)題(ti)開始(shi)增(zeng)加(jia)回熱(re)器的(de)數量,以(yi)此引出(chu)來一系列改(gai)良的(de)循環(huan)(huan)布局。而(er)與光熱(re)發電相結合(he),也需要(yao)將各種循環(huan)(huan)結構進行比較,從而(er)選出(chu)最合(he)適(shi)的(de)。


其中已知再(zai)壓縮循(xun)環(huan)(huan)(huan)不(bu)僅能產(chan)生(sheng)最高的循(xun)環(huan)(huan)(huan)效率(lv)(lv),而且(qie)同(tong)時保(bao)持結構簡(jian)單[16]。為了證明再(zai)壓縮循(xun)環(huan)(huan)(huan)最適合光熱(re)(re)電(dian)站(zhan),基于光熱(re)(re)發電(dian)系(xi)統(tong)將簡(jian)單循(xun)環(huan)(huan)(huan)、再(zai)熱(re)(re)循(xun)環(huan)(huan)(huan)、預(yu)壓縮循(xun)環(huan)(huan)(huan)、再(zai)壓縮循(xun)環(huan)(huan)(huan)和部(bu)分冷卻循(xun)環(huan)(huan)(huan)進行比較(jiao),得到再(zai)壓縮循(xun)環(huan)(huan)(huan)效率(lv)(lv)最高[17,18],單獨(du)使(shi)用該(gai)循(xun)環(huan)(huan)(huan)最大熱(re)(re)效率(lv)(lv)可以達到52%,光熱(re)(re)電(dian)站(zhan)系(xi)統(tong)效率(lv)(lv)可以達到40%[18]。


而后隨著布(bu)雷(lei)頓循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)結構(gou)的(de)(de)(de)(de)一步步優化改良,出現了中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)熱再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)結構(gou),它在(zai)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)的(de)(de)(de)(de)基(ji)礎(chu)上增(zeng)加了壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)機和冷(leng)(leng)(leng)(leng)(leng)(leng)卻(que)(que)(que)器各一臺,雖然成本有所(suo)增(zeng)加,但是循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv)(lv)也隨之增(zeng)大(da)。基(ji)于光熱發(fa)電(dian)系(xi)(xi)統將(jiang)簡(jian)單(dan)(dan)(dan)(dan)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、部(bu)分(fen)冷(leng)(leng)(leng)(leng)(leng)(leng)卻(que)(que)(que)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)和中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)進行比較(jiao),得到(dao)中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)熱效(xiao)(xiao)率(lv)(lv)(lv)最(zui)高(gao)[19,20],在(zai)透平(ping)入口溫(wen)度(du)850℃時達到(dao)55.2%[19],將(jiang)透平(ping)入口溫(wen)度(du)優化到(dao)730℃,并(bing)將(jiang)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)和接收器效(xiao)(xiao)率(lv)(lv)(lv)之間達到(dao)最(zui)佳時太(tai)陽能(neng)發(fa)電(dian)效(xiao)(xiao)率(lv)(lv)(lv)為(wei)(wei)17.5%[20]。Wang等人[21]將(jiang)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)、中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)、部(bu)分(fen)冷(leng)(leng)(leng)(leng)(leng)(leng)卻(que)(que)(que)這(zhe)3種(zhong)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)集成到(dao)光熱發(fa)電(dian)系(xi)(xi)統中(zhong)(zhong),比較(jiao)它們(men)的(de)(de)(de)(de)性能(neng),得到(dao)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv)(lv)從大(da)到(dao)小依次(ci)是中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、部(bu)分(fen)冷(leng)(leng)(leng)(leng)(leng)(leng)卻(que)(que)(que)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan),尤(you)其是當壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)機入口溫(wen)度(du)較(jiao)高(gao)時,中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)和部(bu)分(fen)冷(leng)(leng)(leng)(leng)(leng)(leng)卻(que)(que)(que)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)的(de)(de)(de)(de)優勢會更加明顯。王雅倩[22]建立了基(ji)于塔式光熱系(xi)(xi)統的(de)(de)(de)(de)SCO2布(bu)雷(lei)頓循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)的(de)(de)(de)(de)模型,分(fen)別取各個循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)的(de)(de)(de)(de)最(zui)高(gao)效(xiao)(xiao)率(lv)(lv)(lv)點進行比較(jiao),得到(dao)從大(da)到(dao)小依次(ci)為(wei)(wei):中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、部(bu)分(fen)冷(leng)(leng)(leng)(leng)(leng)(leng)卻(que)(que)(que)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、預壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、簡(jian)單(dan)(dan)(dan)(dan)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)。李佩(pei)蔚[23]則建立了簡(jian)單(dan)(dan)(dan)(dan)、預壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)、再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)、部(bu)分(fen)冷(leng)(leng)(leng)(leng)(leng)(leng)卻(que)(que)(que)、中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)這(zhe)5種(zhong)不(bu)同形(xing)式的(de)(de)(de)(de)SCO2布(bu)雷(lei)頓循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)熱力學模型,得到(dao)中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)是最(zui)適合于塔式太(tai)陽能(neng)系(xi)(xi)統的(de)(de)(de)(de)一種(zhong)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)形(xing)式。袁曉(xiao)旭(xu)和張小波[24]設(she)置(zhi)了透平(ping)入口溫(wen)度(du)550℃、透平(ping)入口壓(ya)(ya)(ya)(ya)(ya)力20MPa、主壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)機入口溫(wen)度(du)35℃的(de)(de)(de)(de)情(qing)況下比較(jiao)了簡(jian)單(dan)(dan)(dan)(dan)、再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)、中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)3種(zhong)基(ji)于光熱發(fa)電(dian)的(de)(de)(de)(de)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv)(lv),由表2可以看出中(zhong)(zhong)冷(leng)(leng)(leng)(leng)(leng)(leng)再(zai)(zai)(zai)壓(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)(suo)循(xun)(xun)(xun)(xun)(xun)(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)的(de)(de)(de)(de)供電(dian)效(xiao)(xiao)率(lv)(lv)(lv)最(zui)高(gao)。


image.png

表2基于光熱發電系統的3種循環(huan)比較


之(zhi)后又出現了中(zhong)(zhong)冷(leng)(leng)(leng)再(zai)(zai)(zai)(zai)熱(re)(re)(re)再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)結(jie)構(gou),與中(zhong)(zhong)冷(leng)(leng)(leng)再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)相比,增(zeng)加了一臺(tai)再(zai)(zai)(zai)(zai)熱(re)(re)(re)透平,循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)結(jie)構(gou)如圖3所(suo)示,雖然成本有所(suo)增(zeng)加,但是循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv)也隨之(zhi)增(zeng)大(da)。基于光(guang)熱(re)(re)(re)發(fa)電(dian)系統將(jiang)簡(jian)單循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、再(zai)(zai)(zai)(zai)熱(re)(re)(re)再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)和中(zhong)(zhong)冷(leng)(leng)(leng)再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)進行比較,得到(dao)中(zhong)(zhong)冷(leng)(leng)(leng)再(zai)(zai)(zai)(zai)熱(re)(re)(re)再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)熱(re)(re)(re)效(xiao)(xiao)率(lv)(lv)最高(gao),既能夠適應干冷(leng)(leng)(leng)又能達到(dao)50%以(yi)上的發(fa)電(dian)效(xiao)(xiao)率(lv)(lv)[25]。Mohagheghi等人[26]研究(jiu)了基于光(guang)熱(re)(re)(re)發(fa)電(dian)的SCO2布雷頓循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)采用(yong)簡(jian)單循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)、再(zai)(zai)(zai)(zai)熱(re)(re)(re)再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)和中(zhong)(zhong)冷(leng)(leng)(leng)再(zai)(zai)(zai)(zai)熱(re)(re)(re)再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)等不同結(jie)構(gou),以(yi)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv)最大(da)為目標函數,對(dui)各個(ge)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)的熱(re)(re)(re)力(li)學性(xing)能進行優化(hua),得到(dao)中(zhong)(zhong)冷(leng)(leng)(leng)再(zai)(zai)(zai)(zai)熱(re)(re)(re)再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)不僅顯著降(jiang)低了排(pai)熱(re)(re)(re)的■損失,而且提(ti)高(gao)了復熱(re)(re)(re)性(xing)能,表3為各個(ge)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)的關(guan)鍵參數取值以(yi)及循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv),可以(yi)看出中(zhong)(zhong)冷(leng)(leng)(leng)再(zai)(zai)(zai)(zai)熱(re)(re)(re)再(zai)(zai)(zai)(zai)壓(ya)縮(suo)循(xun)(xun)(xun)環(huan)(huan)(huan)(huan)(huan)(huan)效(xiao)(xiao)率(lv)(lv)最高(gao)。


image.png

圖3中冷再熱再壓縮(suo)循(xun)環(huan)


雖然中冷再(zai)熱(re)再(zai)壓縮(suo)(suo)循(xun)環效率(lv)最高(gao),但系統相對更加復雜(za),成本更高(gao),而再(zai)壓縮(suo)(suo)相對來說(shuo)效率(lv)較高(gao)且系統簡單,所以應用前景廣泛[27]。所以綜(zong)合(he)分(fen)析再(zai)壓縮(suo)(suo)循(xun)環既簡單又(you)高(gao)效,是最適合(he)光熱(re)發電(dian)系統的(de),后續對于關鍵參數研究(jiu)也都是基于此循(xun)環。


05


基于光熱發電的SCO布雷頓循環關鍵參數優化


針(zhen)對(dui)各種(zhong)循環結(jie)構進行(xing)優(you)化(hua)時,關(guan)鍵(jian)參數(shu)是其(qi)中重(zhong)要的一項研究,從上節可(ke)以得到(dao)再(zai)壓(ya)縮(suo)循環既(ji)可(ke)以達到(dao)很高的效(xiao)率又能保持系(xi)統相對(dui)簡單,所(suo)以關(guan)鍵(jian)參數(shu)進行(xing)優(you)化(hua)大部分都是采用的再(zai)壓(ya)縮(suo)循環結(jie)構。


SCO2布(bu)(bu)雷頓(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)的(de)關鍵參數(shu)(shu)有(you):透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)和(he)壓(ya)(ya)(ya)(ya)力、壓(ya)(ya)(ya)(ya)縮(suo)機入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)和(he)壓(ya)(ya)(ya)(ya)力、分流比(bi)(bi)等(deng)(deng)。通過對(dui)(dui)關鍵參數(shu)(shu)進行優(you)(you)化(hua),可(ke)以使循(xun)(xun)(xun)(xun)環(huan)(huan)效(xiao)(xiao)(xiao)率(lv)(lv)達(da)到(dao)(dao)(dao)最(zui)大(da)。Iverson等(deng)(deng)人(ren)[28]得(de)(de)(de)到(dao)(dao)(dao)透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)高(gao)(gao)于(yu)600℃時(shi)SCO2布(bu)(bu)雷頓(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)在光(guang)(guang)熱(re)發電(dian)系統中(zhong)有(you)明顯優(you)(you)勢(shi)。周(zhou)昊等(deng)(deng)人(ren)[29]則(ze)得(de)(de)(de)到(dao)(dao)(dao)透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)達(da)到(dao)(dao)(dao)750℃左右(you)全(quan)(quan)廠效(xiao)(xiao)(xiao)率(lv)(lv)最(zui)大(da)。陳建生等(deng)(deng)人(ren)[30]建立了(le)(le)基于(yu)塔式光(guang)(guang)熱(re)電(dian)站與SCO2再壓(ya)(ya)(ya)(ya)縮(suo)布(bu)(bu)雷頓(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)集成的(de)數(shu)(shu)學(xue)模(mo)型(xing),得(de)(de)(de)到(dao)(dao)(dao)當透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)為(wei)(wei)901K時(shi)基于(yu)塔式光(guang)(guang)熱(re)電(dian)站的(de)SCO2再壓(ya)(ya)(ya)(ya)縮(suo)布(bu)(bu)雷頓(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)系統熱(re)效(xiao)(xiao)(xiao)率(lv)(lv)可(ke)以達(da)到(dao)(dao)(dao)28.4%。Abid等(deng)(deng)人(ren)[31]分析得(de)(de)(de)到(dao)(dao)(dao)當透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)從823K升高(gao)(gao)到(dao)(dao)(dao)1023K時(shi),循(xun)(xun)(xun)(xun)環(huan)(huan)效(xiao)(xiao)(xiao)率(lv)(lv)從44.55%升高(gao)(gao)到(dao)(dao)(dao)了(le)(le)49%。Grag等(deng)(deng)人(ren)[32]得(de)(de)(de)到(dao)(dao)(dao)循(xun)(xun)(xun)(xun)環(huan)(huan)效(xiao)(xiao)(xiao)率(lv)(lv)隨著透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)的(de)增大(da)而增大(da),隨著透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口壓(ya)(ya)(ya)(ya)力的(de)增大(da)先(xian)增大(da)后減小(xiao)(xiao)(xiao),當溫(wen)度(du)(du)(du)873K、壓(ya)(ya)(ya)(ya)力8.5MPa時(shi)循(xun)(xun)(xun)(xun)環(huan)(huan)效(xiao)(xiao)(xiao)率(lv)(lv)最(zui)大(da),約32%。何欣(xin)欣(xin)等(deng)(deng)人(ren)[33]分析了(le)(le)循(xun)(xun)(xun)(xun)環(huan)(huan)關鍵參數(shu)(shu)對(dui)(dui)全(quan)(quan)廠熱(re)效(xiao)(xiao)(xiao)率(lv)(lv)的(de)影響(xiang),得(de)(de)(de)到(dao)(dao)(dao)全(quan)(quan)廠熱(re)效(xiao)(xiao)(xiao)率(lv)(lv)與透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)和(he)循(xun)(xun)(xun)(xun)環(huan)(huan)壓(ya)(ya)(ya)(ya)比(bi)(bi)均呈(cheng)先(xian)增大(da)后減小(xiao)(xiao)(xiao)的(de)趨勢(shi),采用(yong)遺傳(chuan)算法以全(quan)(quan)廠熱(re)效(xiao)(xiao)(xiao)率(lv)(lv)為(wei)(wei)優(you)(you)化(hua)目標,得(de)(de)(de)到(dao)(dao)(dao)在透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)787.8℃、透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口壓(ya)(ya)(ya)(ya)力35MPa、循(xun)(xun)(xun)(xun)環(huan)(huan)壓(ya)(ya)(ya)(ya)比(bi)(bi)4.573時(shi)全(quan)(quan)廠熱(re)效(xiao)(xiao)(xiao)率(lv)(lv)為(wei)(wei)35.244%。韓中(zhong)合等(deng)(deng)人(ren)[34]建立了(le)(le)SCO2再壓(ya)(ya)(ya)(ya)縮(suo)布(bu)(bu)雷頓(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan)的(de)塔式太陽能光(guang)(guang)熱(re)系統模(mo)型(xing),采用(yong)遺傳(chuan)算法對(dui)(dui)系統的(de)關鍵參數(shu)(shu)進行優(you)(you)化(hua),得(de)(de)(de)到(dao)(dao)(dao)在透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)784℃~841℃、主壓(ya)(ya)(ya)(ya)縮(suo)機入(ru)(ru)(ru)(ru)口壓(ya)(ya)(ya)(ya)力7.68MPa~10MPa、最(zui)佳(jia)分流系數(shu)(shu)0.25~0.32的(de)取(qu)值范圍內(nei)系統總(zong)■損率(lv)(lv)可(ke)以達(da)到(dao)(dao)(dao)70.72%~76.87%。王智等(deng)(deng)人(ren)[35]建立了(le)(le)基于(yu)塔式光(guang)(guang)熱(re)系統的(de)SCO2再壓(ya)(ya)(ya)(ya)縮(suo)布(bu)(bu)雷頓(dun)(dun)循(xun)(xun)(xun)(xun)環(huan)(huan),得(de)(de)(de)到(dao)(dao)(dao)循(xun)(xun)(xun)(xun)環(huan)(huan)效(xiao)(xiao)(xiao)率(lv)(lv)與透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)和(he)分流比(bi)(bi)呈(cheng)先(xian)增大(da)后減小(xiao)(xiao)(xiao)的(de)趨勢(shi),在750℃、0.7左右(you)達(da)到(dao)(dao)(dao)最(zui)大(da);而不同循(xun)(xun)(xun)(xun)環(huan)(huan)壓(ya)(ya)(ya)(ya)比(bi)(bi)對(dui)(dui)應不同的(de)最(zui)佳(jia)透(tou)(tou)平(ping)入(ru)(ru)(ru)(ru)口溫(wen)度(du)(du)(du)和(he)分流比(bi)(bi),用(yong)遺傳(chuan)算法進行優(you)(you)化(hua),結果見表4。


image.png

表3幾(ji)種(zhong)循環的效(xiao)率(lv)比較


image.png

表4參數(shu)優化后的(de)循環效率


沈涵孜等人[36]建立了SCO2再壓(ya)(ya)縮布雷頓(dun)循(xun)環,通過(guo)軟件模擬來分析(xi)系(xi)統參數對(dui)循(xun)環效率的影響,如圖4、圖5所(suo)示。由圖4、圖5可以看(kan)出(chu),循(xun)環凈效率隨透(tou)平(ping)入(ru)口溫度升高(gao)而(er)升高(gao),隨透(tou)平(ping)入(ru)口壓(ya)(ya)力升高(gao)而(er)先增大后減小;最后基于塔式光熱系(xi)統對(dui)關鍵參數的優化,得到當透(tou)平(ping)入(ru)口溫度和(he)壓(ya)(ya)力為550℃、24MPa,主壓(ya)(ya)縮機入(ru)口溫度35℃,分流比0.65時可以使循(xun)環效率達到43.8%。


image.png

圖4透平入(ru)口溫(wen)度與循(xun)環效率關(guan)系


image.png

圖5透平入(ru)口壓(ya)力(li)與循環效率關系


通(tong)過(guo)對關(guan)鍵參數的優(you)化會發現,這些參數不是單一影響循環效率(lv)的,它們之間(jian)存在著耦合關(guan)系,所以為(wei)了使(shi)循環效率(lv)達到最(zui)佳,最(zui)好(hao)還(huan)是采用算法(fa)對參數進行優(you)化,使(shi)各個(ge)參數都達到最(zui)佳,從而得(de)到最(zui)優(you)的循環效率(lv)。


06


SCO布雷頓循環設備


在得(de)到(dao)SCO2布雷頓循環(huan)(huan)的(de)循環(huan)(huan)結構(gou)和(he)關鍵參(can)數后(hou),對于循環(huan)(huan)所需的(de)設(she)備也是一個(ge)重要(yao)的(de)研(yan)究方向(xiang)。設(she)備主要(yao)就分兩種(zhong):旋轉機械和(he)換熱器。


5.1旋轉機械


旋轉機(ji)(ji)械(xie)是SCO2循環(huan)熱功轉換的關鍵(jian)部件。主要(yao)有兩種:透平和壓縮(suo)機(ji)(ji)。


SCO2透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)有(you)徑(jing)(jing)流(向(xiang)(xiang)(xiang)心(xin)(xin))透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)和(he)(he)軸(zhou)流透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)兩(liang)種(zhong)(zhong),國(guo)內(nei)外對于(yu)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)的(de)(de)(de)(de)(de)(de)(de)(de)研(yan)究主要(yao)就分(fen)為(wei)這(zhe)(zhe)兩(liang)種(zhong)(zhong)。徑(jing)(jing)流式適(shi)宜較(jiao)小規模(mo)(mo)應(ying)(ying)用(yong),最(zui)(zui)大適(shi)用(yong)于(yu)50MW級(ji)別,而軸(zhou)流式更(geng)適(shi)于(yu)較(jiao)大規模(mo)(mo)的(de)(de)(de)(de)(de)(de)(de)(de)應(ying)(ying)用(yong)[37]。Moore等(deng)(deng)(deng)(deng)人(ren)(ren)[38,39]為(wei)SCO2再(zai)壓(ya)縮(suo)布(bu)雷頓循(xun)(xun)環(huan)(huan)(huan)設計(ji)(ji)(ji)了(le)(le)(le)一(yi)(yi)種(zhong)(zhong)新型(xing)(xing)高(gao)(gao)溫透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping),這(zhe)(zhe)種(zhong)(zhong)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)既可(ke)以(yi)(yi)(yi)應(ying)(ying)用(yong)在(zai)傳統(tong)熱源也能(neng)應(ying)(ying)用(yong)在(zai)太陽能(neng)發電系統(tong),讓SCO2循(xun)(xun)環(huan)(huan)(huan)達到(dao)(dao)(dao)(dao)接(jie)近(jin)50%的(de)(de)(de)(de)(de)(de)(de)(de)熱效(xiao)(xiao)率,目(mu)前(qian)此透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)已經可(ke)以(yi)(yi)(yi)在(zai)溫度(du)(du)550℃、壓(ya)力18MPa時轉子(zi)轉速達到(dao)(dao)(dao)(dao)21 000r/min的(de)(de)(de)(de)(de)(de)(de)(de)要(yao)求(qiu),并(bing)(bing)將(jiang)(jiang)(jiang)繼續提高(gao)(gao)要(yao)求(qiu)進(jin)行(xing)(xing)(xing)(xing)試驗(yan)(yan)。Lee等(deng)(deng)(deng)(deng)人(ren)(ren)[40]提出(chu)了(le)(le)(le)一(yi)(yi)種(zhong)(zhong)SCO2布(bu)雷頓循(xun)(xun)環(huan)(huan)(huan)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)的(de)(de)(de)(de)(de)(de)(de)(de)改(gai)進(jin)設計(ji)(ji)(ji)方(fang)法,此方(fang)法可(ke)以(yi)(yi)(yi)同(tong)時得(de)(de)(de)到(dao)(dao)(dao)(dao)某一(yi)(yi)工(gong)況(kuang)下(xia)軸(zhou)向(xiang)(xiang)(xiang)和(he)(he)徑(jing)(jing)向(xiang)(xiang)(xiang)兩(liang)種(zhong)(zhong)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)的(de)(de)(de)(de)(de)(de)(de)(de)設計(ji)(ji)(ji)方(fang)案,從(cong)而方(fang)便在(zai)相同(tong)設計(ji)(ji)(ji)條件下(xia)選(xuan)(xuan)擇最(zui)(zui)有(you)效(xiao)(xiao)的(de)(de)(de)(de)(de)(de)(de)(de)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)類型(xing)(xing)。Schmitt等(deng)(deng)(deng)(deng)人(ren)(ren)[41]對100MW的(de)(de)(de)(de)(de)(de)(de)(de)SCO2透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)的(de)(de)(de)(de)(de)(de)(de)(de)參數(shu)進(jin)行(xing)(xing)(xing)(xing)了(le)(le)(le)設計(ji)(ji)(ji),設定為(wei)6級(ji)的(de)(de)(de)(de)(de)(de)(de)(de)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)且入口(kou)溫度(du)(du)為(wei)1035K,并(bing)(bing)設計(ji)(ji)(ji)了(le)(le)(le)詳細的(de)(de)(de)(de)(de)(de)(de)(de)流場計(ji)(ji)(ji)算氣(qi)(qi)(qi)動(dong)損失系數(shu),經過(guo)驗(yan)(yan)證(zheng)均滿(man)足(zu)要(yao)求(qiu)。劉長(chang)春等(deng)(deng)(deng)(deng)人(ren)(ren)[42]綜(zong)合了(le)(le)(le)國(guo)內(nei)外的(de)(de)(de)(de)(de)(de)(de)(de)各(ge)種(zhong)(zhong)數(shu)據,將(jiang)(jiang)(jiang)Ni基(ji)合金(jin)、奧(ao)氏體鋼和(he)(he)鐵(tie)素體鋼進(jin)行(xing)(xing)(xing)(xing)對比得(de)(de)(de)到(dao)(dao)(dao)(dao)了(le)(le)(le)SCO2透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)選(xuan)(xuan)材建議,若(ruo)考慮制造成本應(ying)(ying)選(xuan)(xuan)擇奧(ao)氏體鋼或鐵(tie)素體鋼,若(ruo)考慮抗腐蝕(shi)應(ying)(ying)選(xuan)(xuan)擇Ni基(ji)合金(jin)。張少鋒等(deng)(deng)(deng)(deng)人(ren)(ren)[43]將(jiang)(jiang)(jiang)干(gan)氣(qi)(qi)(qi)密(mi)(mi)封(feng)裝置安裝在(zai)主軸(zhou)靠近(jin)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)的(de)(de)(de)(de)(de)(de)(de)(de)位置,既實現(xian)了(le)(le)(le)對透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)的(de)(de)(de)(de)(de)(de)(de)(de)密(mi)(mi)封(feng),又可(ke)以(yi)(yi)(yi)達到(dao)(dao)(dao)(dao)對密(mi)(mi)封(feng)的(de)(de)(de)(de)(de)(de)(de)(de)降溫作(zuo)用(yong),保證(zheng)了(le)(le)(le)SCO2布(bu)雷頓系統(tong)的(de)(de)(de)(de)(de)(de)(de)(de)運行(xing)(xing)(xing)(xing)。王(wang)鵬亮等(deng)(deng)(deng)(deng)人(ren)(ren)[44]將(jiang)(jiang)(jiang)壓(ya)縮(suo)機和(he)(he)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)采(cai)用(yong)同(tong)軸(zhou)同(tong)缸的(de)(de)(de)(de)(de)(de)(de)(de)布(bu)置,將(jiang)(jiang)(jiang)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)高(gao)(gao)溫高(gao)(gao)壓(ya)密(mi)(mi)封(feng)的(de)(de)(de)(de)(de)(de)(de)(de)難題變成了(le)(le)(le)低溫密(mi)(mi)封(feng),實現(xian)了(le)(le)(le)這(zhe)(zhe)一(yi)(yi)系統(tong)應(ying)(ying)用(yong)。目(mu)前(qian)關(guan)于(yu)向(xiang)(xiang)(xiang)心(xin)(xin)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)的(de)(de)(de)(de)(de)(de)(de)(de)研(yan)究較(jiao)多(duo),Cho等(deng)(deng)(deng)(deng)人(ren)(ren)[45]設計(ji)(ji)(ji)了(le)(le)(le)一(yi)(yi)種(zhong)(zhong)10KW級(ji)的(de)(de)(de)(de)(de)(de)(de)(de)SCO2循(xun)(xun)環(huan)(huan)(huan),采(cai)用(yong)徑(jing)(jing)向(xiang)(xiang)(xiang)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)和(he)(he)離心(xin)(xin)壓(ya)縮(suo)機,并(bing)(bing)設計(ji)(ji)(ji)了(le)(le)(le)帶有(you)迷宮密(mi)(mi)封(feng)的(de)(de)(de)(de)(de)(de)(de)(de)徑(jing)(jing)向(xiang)(xiang)(xiang)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)和(he)(he)離心(xin)(xin)壓(ya)縮(suo)機的(de)(de)(de)(de)(de)(de)(de)(de)葉(xie)輪(lun)(lun)的(de)(de)(de)(de)(de)(de)(de)(de)冠(guan)狀(zhuang)結(jie)(jie)構,以(yi)(yi)(yi)克服SNL報道的(de)(de)(de)(de)(de)(de)(de)(de)推力平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)衡問題。Odabaee等(deng)(deng)(deng)(deng)人(ren)(ren)[46]采(cai)用(yong)ANSYS對SCO2向(xiang)(xiang)(xiang)心(xin)(xin)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)進(jin)行(xing)(xing)(xing)(xing)了(le)(le)(le)CFD分(fen)析,該透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)在(zai)光熱條件下(xia)可(ke)達到(dao)(dao)(dao)(dao)入口(kou)溫度(du)(du)560℃、壓(ya)比2.2、功(gong)率100KW,比較(jiao)了(le)(le)(le)SCO2氣(qi)(qi)(qi)體屬性方(fang)程和(he)(he)從(cong)NIST中生成的(de)(de)(de)(de)(de)(de)(de)(de)RGP表(biao)兩(liang)種(zhong)(zhong)方(fang)法的(de)(de)(de)(de)(de)(de)(de)(de)計(ji)(ji)(ji)算結(jie)(jie)果和(he)(he)耗時,發現(xian)結(jie)(jie)果基(ji)本一(yi)(yi)致。周奧(ao)錚等(deng)(deng)(deng)(deng)人(ren)(ren)[47]則提出(chu)了(le)(le)(le)一(yi)(yi)種(zhong)(zhong)采(cai)用(yong)一(yi)(yi)維向(xiang)(xiang)(xiang)心(xin)(xin)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)預測(ce)的(de)(de)(de)(de)(de)(de)(de)(de)SCO2再(zai)壓(ya)縮(suo)循(xun)(xun)環(huan)(huan)(huan)模(mo)(mo)型(xing)(xing),將(jiang)(jiang)(jiang)它與(yu)固定透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)進(jin)行(xing)(xing)(xing)(xing)對比,結(jie)(jie)果發現(xian)這(zhe)(zhe)種(zhong)(zhong)模(mo)(mo)型(xing)(xing)更(geng)加(jia)適(shi)合變工(gong)況(kuang)情況(kuang)。王(wang)春陽[48]對一(yi)(yi)個70MW級(ji)SCO2布(bu)雷頓循(xun)(xun)環(huan)(huan)(huan)的(de)(de)(de)(de)(de)(de)(de)(de)向(xiang)(xiang)(xiang)心(xin)(xin)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)進(jin)行(xing)(xing)(xing)(xing)了(le)(le)(le)改(gai)進(jin),得(de)(de)(de)到(dao)(dao)(dao)(dao)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)的(de)(de)(de)(de)(de)(de)(de)(de)參數(shu)為(wei):最(zui)(zui)佳進(jin)口(kou)葉(xie)片角30°,最(zui)(zui)佳葉(xie)片出(chu)口(kou)角82°,葉(xie)輪(lun)(lun)葉(xie)片數(shu)在(zai)10、11、12均可(ke),最(zui)(zui)佳葉(xie)根倒角半徑(jing)(jing)在(zai)3mm。王(wang)巧珍[49]對7.5MW的(de)(de)(de)(de)(de)(de)(de)(de)SCO2向(xiang)(xiang)(xiang)心(xin)(xin)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)進(jin)行(xing)(xing)(xing)(xing)了(le)(le)(le)氣(qi)(qi)(qi)動(dong)設計(ji)(ji)(ji),通過(guo)數(shu)值(zhi)模(mo)(mo)擬(ni)(ni)得(de)(de)(de)到(dao)(dao)(dao)(dao)最(zui)(zui)優方(fang)案功(gong)率為(wei)7.47MW,效(xiao)(xiao)率85.38%。呂國(guo)川等(deng)(deng)(deng)(deng)人(ren)(ren)[50]采(cai)用(yong)CFD對MW級(ji)的(de)(de)(de)(de)(de)(de)(de)(de)SCO2向(xiang)(xiang)(xiang)心(xin)(xin)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)進(jin)行(xing)(xing)(xing)(xing)數(shu)值(zhi)模(mo)(mo)擬(ni)(ni),得(de)(de)(de)到(dao)(dao)(dao)(dao)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)設計(ji)(ji)(ji)點效(xiao)(xiao)率達到(dao)(dao)(dao)(dao)88.45%,滿(man)足(zu)要(yao)求(qiu)。趙攀等(deng)(deng)(deng)(deng)人(ren)(ren)[51]設計(ji)(ji)(ji)了(le)(le)(le)1MW的(de)(de)(de)(de)(de)(de)(de)(de)SCO2向(xiang)(xiang)(xiang)心(xin)(xin)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping),使用(yong)RANS得(de)(de)(de)到(dao)(dao)(dao)(dao)在(zai)設計(ji)(ji)(ji)工(gong)況(kuang)下(xia)透(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)(tou)平(ping)(ping)(ping)(ping)(ping)(ping)(ping)(ping)氣(qi)(qi)(qi)動(dong)效(xiao)(xiao)率達到(dao)(dao)(dao)(dao)83.53%,與(yu)設計(ji)(ji)(ji)值(zhi)偏差為(wei)1.54%,驗(yan)(yan)證(zheng)了(le)(le)(le)設計(ji)(ji)(ji)方(fang)法的(de)(de)(de)(de)(de)(de)(de)(de)可(ke)靠性。


除透平外,另一種(zhong)旋轉機械就(jiu)是(shi)壓(ya)縮機了,壓(ya)縮機的種(zhong)類有很多,但目前應用在SCO2布雷頓循環中最(zui)多的還是(shi)離心式壓(ya)縮機,如圖(tu)6所示。


image.png

圖(tu)6離心(xin)壓縮機結構簡(jian)圖(tu)


Utamura等(deng)(deng)(deng)人(ren)(ren)[52]設(she)計(ji)的(de)(de)(de)離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)和徑(jing)向透平(ping)由發電(dian)(dian)機(ji)(ji)驅動(dong)(dong)、高速逆變器控制,在(zai)轉速1.15kHz,質量(liang)(liang)流量(liang)(liang)1.1kg/s,壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)7.5MPa、304.6K,透平(ping)10.6MPa、533K工況(kuang)下(xia),可(ke)以(yi)(yi)實現110W的(de)(de)(de)發電(dian)(dian)運行。Rinaldi等(deng)(deng)(deng)人(ren)(ren)[53]利(li)用(yong)RANS模(mo)(mo)(mo)擬計(ji)算了(le)(le)SCO2離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)的(de)(de)(de)性(xing)能(neng)圖(tu),考慮了(le)(le)45、50、55等(deng)(deng)(deng)3種不(bu)同(tong)轉速,并(bing)將數(shu)值結(jie)果與SNL的(de)(de)(de)實驗(yan)數(shu)據進(jin)(jin)(jin)(jin)(jin)行比(bi)較(jiao),證明了(le)(le)該(gai)(gai)方(fang)法的(de)(de)(de)潛力(li)(li)。Behafarid等(deng)(deng)(deng)人(ren)(ren)[54]利(li)用(yong)可(ke)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)和不(bu)可(ke)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)的(de)(de)(de)SCO2模(mo)(mo)(mo)型(xing)(xing)(xing),以(yi)(yi)及可(ke)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)理想氣(qi)體(ti)模(mo)(mo)(mo)型(xing)(xing)(xing)對(dui)(dui)離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)進(jin)(jin)(jin)(jin)(jin)行一(yi)維(wei)(wei)分(fen)析,之后采用(yong)了(le)(le)新的(de)(de)(de)建(jian)模(mo)(mo)(mo)方(fang)法用(yong)于SCO2壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)的(de)(de)(de)三維(wei)(wei)數(shu)值模(mo)(mo)(mo)擬,得到不(bu)可(ke)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)模(mo)(mo)(mo)型(xing)(xing)(xing)可(ke)對(dui)(dui)SCO2壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)進(jin)(jin)(jin)(jin)(jin)行完整詳細(xi)的(de)(de)(de)多維(wei)(wei)模(mo)(mo)(mo)型(xing)(xing)(xing)仿真,且該(gai)(gai)模(mo)(mo)(mo)型(xing)(xing)(xing)具有數(shu)值穩定性(xing)、計(ji)算效率和物(wu)理精度(du)等(deng)(deng)(deng)優(you)點。Shao等(deng)(deng)(deng)人(ren)(ren)[55]引入(ru)了(le)(le)“凝(ning)結(jie)裕量(liang)(liang)”對(dui)(dui)SCO2離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)進(jin)(jin)(jin)(jin)(jin)行了(le)(le)詳細(xi)的(de)(de)(de)設(she)計(ji)探討(tao),以(yi)(yi)低(di)流量(liang)(liang)系數(shu)SCO2離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)的(de)(de)(de)初步設(she)計(ji)結(jie)果為(wei)例進(jin)(jin)(jin)(jin)(jin)行了(le)(le)CFD模(mo)(mo)(mo)擬,得到的(de)(de)(de)結(jie)果與勘探結(jie)果一(yi)致。Du等(deng)(deng)(deng)人(ren)(ren)[56]采用(yong)遺(yi)傳算法對(dui)(dui)SCO2離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)進(jin)(jin)(jin)(jin)(jin)行優(you)化設(she)計(ji),得到壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)最(zui)佳揚程(cheng)系數(shu)為(wei)0.53,最(zui)大循環效率為(wei)24.4%。劉朝陽等(deng)(deng)(deng)人(ren)(ren)[57]研(yan)(yan)究了(le)(le)葉頂(ding)間隙對(dui)(dui)SCO2離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)氣(qi)動(dong)(dong)性(xing)能(neng)的(de)(de)(de)影響,得到葉頂(ding)間隙的(de)(de)(de)增大會(hui)降(jiang)低(di)SCO2離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)的(de)(de)(de)效率和壓(ya)(ya)(ya)(ya)(ya)(ya)比(bi)。朱玉銘等(deng)(deng)(deng)人(ren)(ren)[58]設(she)計(ji)開發了(le)(le)SCO2兩級離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji),得到實驗(yan)最(zui)大總壓(ya)(ya)(ya)(ya)(ya)(ya)比(bi)超過2.69,最(zui)大質量(liang)(liang)流量(liang)(liang)接(jie)近16kg/s,并(bing)將此壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)與多個型(xing)(xing)(xing)號單級離(li)心(xin)(xin)(xin)(xin)式壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)進(jin)(jin)(jin)(jin)(jin)行對(dui)(dui)比(bi),提出(chu)降(jiang)低(di)轉速是提高SCO2離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)性(xing)能(neng)的(de)(de)(de)方(fang)法之一(yi)。曹潤等(deng)(deng)(deng)人(ren)(ren)[59]研(yan)(yan)究了(le)(le)增加盤腔和密封結(jie)構的(de)(de)(de)150kW SCO2離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji),得到在(zai)設(she)計(ji)工況(kuang)下(xia)氣(qi)動(dong)(dong)效率為(wei)72.1%,壓(ya)(ya)(ya)(ya)(ya)(ya)比(bi)為(wei)2.19,最(zui)大軸向推力(li)(li)為(wei)1635kN,離(li)心(xin)(xin)(xin)(xin)葉輪的(de)(de)(de)表面等(deng)(deng)(deng)效應力(li)(li)最(zui)大值為(wei)109.95MPa,滿足設(she)計(ji)材料(liao)304鋼的(de)(de)(de)強度(du)需求(qiu)。尚鵬旭等(deng)(deng)(deng)人(ren)(ren)[60]對(dui)(dui)10MW級SCO2離(li)心(xin)(xin)(xin)(xin)壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)不(bu)同(tong)進(jin)(jin)(jin)(jin)(jin)口條件進(jin)(jin)(jin)(jin)(jin)行分(fen)析,得到進(jin)(jin)(jin)(jin)(jin)口溫度(du)越低(di)或進(jin)(jin)(jin)(jin)(jin)口壓(ya)(ya)(ya)(ya)(ya)(ya)力(li)(li)越高時,壓(ya)(ya)(ya)(ya)(ya)(ya)縮(suo)(suo)機(ji)(ji)的(de)(de)(de)性(xing)能(neng)越高。


5.2換熱器


在(zai)SCO2循環(huan)中(zhong)換(huan)(huan)熱(re)(re)(re)(re)(re)設備(bei)主要分(fen)為回(hui)熱(re)(re)(re)(re)(re)器(qi)(qi)、冷卻器(qi)(qi)以及(ji)加熱(re)(re)(re)(re)(re)器(qi)(qi)3類。目前的換(huan)(huan)熱(re)(re)(re)(re)(re)器(qi)(qi)有(you)板式(shi)(shi)、管殼(ke)式(shi)(shi)和(he)印刷電路板式(shi)(shi),其中(zhong)印刷電路板式(shi)(shi)換(huan)(huan)熱(re)(re)(re)(re)(re)器(qi)(qi)(PCHE)相比(bi)管殼(ke)式(shi)(shi)和(he)板式(shi)(shi)換(huan)(huan)熱(re)(re)(re)(re)(re)器(qi)(qi)具有(you)非常突出的優(you)點(dian),主要體(ti)現(xian)在(zai):(1)換(huan)(huan)熱(re)(re)(re)(re)(re)效率高;(2)耐高溫和(he)耐高壓(ya)能力強;(3)在(zai)同等功率的條(tiao)件下,PCHE的體(ti)積和(he)重量是管殼(ke)式(shi)(shi)換(huan)(huan)熱(re)(re)(re)(re)(re)器(qi)(qi)的1/5[61]。由(you)于流體(ti)之間的巨大壓(ya)力差以及(ji)它們的緊湊性(xing)[62],PCHE被(bei)認(ren)為是SCO2布雷頓循環(huan)換(huan)(huan)熱(re)(re)(re)(re)(re)器(qi)(qi)的最佳選(xuan)擇(ze)之一(yi),大部分(fen)循環(huan)都是采用的此種(zhong)換(huan)(huan)熱(re)(re)(re)(re)(re)器(qi)(qi),圖7所(suo)示為PCHE的結(jie)構示意(yi)圖[63]。


image.png

圖7印刷電(dian)路(lu)板式換熱器示意(yi)圖


image.png

圖8 PCHE通道類型(xing)


可(ke)以看到(dao)(dao)許多文獻都是(shi)采用(yong)(yong)(yong)(yong)(yong)的(de)(de)(de)(de)(de)(de)(de)(de)(de)此種(zhong)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi),如(ru)Nikitin等人(ren)[63]通(tong)(tong)(tong)(tong)過(guo)實(shi)驗(yan)和(he)(he)(he)(he)(he)(he)數(shu)(shu)(shu)(shu)值方(fang)法(fa)研究(jiu)了(le)(le)(le)(le)SCO2布雷頓(dun)(dun)循(xun)(xun)環(huan)(huan)中(zhong)(zhong)PCHE的(de)(de)(de)(de)(de)(de)(de)(de)(de)傳熱(re)(re)(re)(re)(re)(re)(re)(re)和(he)(he)(he)(he)(he)(he)壓(ya)降特性(xing),得(de)到(dao)(dao)局部(bu)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)系(xi)數(shu)(shu)(shu)(shu)和(he)(he)(he)(he)(he)(he)壓(ya)降系(xi)數(shu)(shu)(shu)(shu)的(de)(de)(de)(de)(de)(de)(de)(de)(de)經驗(yan)關系(xi)式。Saeed等人(ren)[64]研究(jiu)了(le)(le)(le)(le)PCHE的(de)(de)(de)(de)(de)(de)(de)(de)(de)不(bu)(bu)同(tong)設(she)計對(dui)(dui)SCO2循(xun)(xun)環(huan)(huan)性(xing)能的(de)(de)(de)(de)(de)(de)(de)(de)(de)影(ying)響(xiang),采用(yong)(yong)(yong)(yong)(yong)了(le)(le)(le)(le)直(zhi)(zhi)(zhi)型(xing)(xing)(xing)(xing)、Z型(xing)(xing)(xing)(xing)、C型(xing)(xing)(xing)(xing)、S型(xing)(xing)(xing)(xing)和(he)(he)(he)(he)(he)(he)翼型(xing)(xing)(xing)(xing)5種(zhong)不(bu)(bu)同(tong)翅片(pian)構型(xing)(xing)(xing)(xing),如(ru)圖8所示(shi),得(de)到(dao)(dao)C型(xing)(xing)(xing)(xing)通(tong)(tong)(tong)(tong)道(dao)(dao)和(he)(he)(he)(he)(he)(he)Z型(xing)(xing)(xing)(xing)通(tong)(tong)(tong)(tong)道(dao)(dao)分別對(dui)(dui)應循(xun)(xun)環(huan)(huan)效(xiao)(xiao)(xiao)率(lv)的(de)(de)(de)(de)(de)(de)(de)(de)(de)最大(da)值和(he)(he)(he)(he)(he)(he)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi)的(de)(de)(de)(de)(de)(de)(de)(de)(de)最小(xiao)尺寸。Ngo等人(ren)[65]提(ti)出了(le)(le)(le)(le)一(yi)(yi)種(zhong)新型(xing)(xing)(xing)(xing)S型(xing)(xing)(xing)(xing)PCHE,并將它(ta)與(yu)Z型(xing)(xing)(xing)(xing)對(dui)(dui)比,得(de)到(dao)(dao)它(ta)可(ke)在(zai)(zai)(zai)(zai)保持(chi)(chi)傳熱(re)(re)(re)(re)(re)(re)(re)(re)性(xing)能的(de)(de)(de)(de)(de)(de)(de)(de)(de)同(tong)時(shi)(shi)(shi)降低6~7倍的(de)(de)(de)(de)(de)(de)(de)(de)(de)壓(ya)降。Kruizenga等人(ren)[66,67]分析了(le)(le)(le)(le)PCHE內SCO2的(de)(de)(de)(de)(de)(de)(de)(de)(de)傳熱(re)(re)(re)(re)(re)(re)(re)(re),采用(yong)(yong)(yong)(yong)(yong)了(le)(le)(le)(le)316型(xing)(xing)(xing)(xing)不(bu)(bu)銹鋼(gang)、九通(tong)(tong)(tong)(tong)道(dao)(dao)、半(ban)圓(yuan)形試驗(yan)段(duan)的(de)(de)(de)(de)(de)(de)(de)(de)(de)結構。Mohammed等人(ren)[69]提(ti)出冷(leng)卻器(qi)(qi)(qi)(qi)是(shi)阻(zu)礙實(shi)現(xian)SCO2循(xun)(xun)環(huan)(huan)高(gao)熱(re)(re)(re)(re)(re)(re)(re)(re)效(xiao)(xiao)(xiao)率(lv)的(de)(de)(de)(de)(de)(de)(de)(de)(de)主要(yao)原因之(zhi)一(yi)(yi),所以必(bi)須(xu)從冷(leng)卻器(qi)(qi)(qi)(qi)中(zhong)(zhong)回(hui)(hui)收熱(re)(re)(re)(re)(re)(re)(re)(re)量(liang),以提(ti)高(gao)SCO2系(xi)統(tong)的(de)(de)(de)(de)(de)(de)(de)(de)(de)整體(ti)能源利用(yong)(yong)(yong)(yong)(yong)效(xiao)(xiao)(xiao)率(lv),研究(jiu)得(de)到(dao)(dao)具有(you)鋸齒形和(he)(he)(he)(he)(he)(he)波浪形通(tong)(tong)(tong)(tong)道(dao)(dao)的(de)(de)(de)(de)(de)(de)(de)(de)(de)PCHE適(shi)合于(yu)SCO2循(xun)(xun)環(huan)(huan),在(zai)(zai)(zai)(zai)通(tong)(tong)(tong)(tong)道(dao)(dao)中(zhong)(zhong)插入(ru)S型(xing)(xing)(xing)(xing)或(huo)翼型(xing)(xing)(xing)(xing)翅片(pian)可(ke)提(ti)高(gao)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)能力(li)(li)(li)(li)(li)。李磊(lei)等人(ren)[70]通(tong)(tong)(tong)(tong)過(guo)數(shu)(shu)(shu)(shu)值模(mo)擬(ni)方(fang)法(fa)對(dui)(dui)Z型(xing)(xing)(xing)(xing)的(de)(de)(de)(de)(de)(de)(de)(de)(de)PCHE傳熱(re)(re)(re)(re)(re)(re)(re)(re)通(tong)(tong)(tong)(tong)道(dao)(dao)的(de)(de)(de)(de)(de)(de)(de)(de)(de)傳熱(re)(re)(re)(re)(re)(re)(re)(re)和(he)(he)(he)(he)(he)(he)阻(zu)力(li)(li)(li)(li)(li)特性(xing)進行了(le)(le)(le)(le)研究(jiu),得(de)到(dao)(dao)層流(liu)(liu)模(mo)型(xing)(xing)(xing)(xing)對(dui)(dui)于(yu)Z型(xing)(xing)(xing)(xing)的(de)(de)(de)(de)(de)(de)(de)(de)(de)PCHE的(de)(de)(de)(de)(de)(de)(de)(de)(de)傳熱(re)(re)(re)(re)(re)(re)(re)(re)和(he)(he)(he)(he)(he)(he)阻(zu)力(li)(li)(li)(li)(li)效(xiao)(xiao)(xiao)果(guo)更(geng)好(hao),當(dang)只改(gai)變兩(liang)側流(liu)(liu)體(ti)的(de)(de)(de)(de)(de)(de)(de)(de)(de)質量(liang)流(liu)(liu)量(liang)時(shi)(shi)(shi)傳熱(re)(re)(re)(re)(re)(re)(re)(re)效(xiao)(xiao)(xiao)率(lv)會變小(xiao),而(er)(er)當(dang)只改(gai)變熱(re)(re)(re)(re)(re)(re)(re)(re)側通(tong)(tong)(tong)(tong)道(dao)(dao)的(de)(de)(de)(de)(de)(de)(de)(de)(de)入(ru)口溫(wen)度(du)時(shi)(shi)(shi)傳熱(re)(re)(re)(re)(re)(re)(re)(re)效(xiao)(xiao)(xiao)率(lv)會變大(da)。李凈松等人(ren)[71]基(ji)于(yu)PCHE分析了(le)(le)(le)(le)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi)尺寸對(dui)(dui)SCO2再壓(ya)縮布雷頓(dun)(dun)循(xun)(xun)環(huan)(huan)性(xing)能的(de)(de)(de)(de)(de)(de)(de)(de)(de)影(ying)響(xiang),得(de)到(dao)(dao)循(xun)(xun)環(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)效(xiao)(xiao)(xiao)率(lv)與(yu)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)長度(du)和(he)(he)(he)(he)(he)(he)面(mian)積成正比,但當(dang)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi)長度(du)大(da)于(yu)1.5m,高(gao)溫(wen)回(hui)(hui)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi)截(jie)面(mian)積大(da)于(yu)12m2、低溫(wen)回(hui)(hui)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi)截(jie)面(mian)積大(da)于(yu)9m2時(shi)(shi)(shi)循(xun)(xun)環(huan)(huan)效(xiao)(xiao)(xiao)率(lv)提(ti)升(sheng)(sheng)不(bu)(bu)再明顯。高(gao)毅超(chao)等人(ren)[72]建立了(le)(le)(le)(le)Z型(xing)(xing)(xing)(xing)PCHE模(mo)型(xing)(xing)(xing)(xing),分析了(le)(le)(le)(le)管徑(jing)(jing)和(he)(he)(he)(he)(he)(he)轉折角(jiao)(jiao)對(dui)(dui)其換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)的(de)(de)(de)(de)(de)(de)(de)(de)(de)影(ying)響(xiang),得(de)到(dao)(dao)在(zai)(zai)(zai)(zai)2mm~3mm、20°~45°時(shi)(shi)(shi)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)性(xing)能最好(hao)。徐(xu)婷(ting)婷(ting)等人(ren)[73]采用(yong)(yong)(yong)(yong)(yong)分段(duan)設(she)計的(de)(de)(de)(de)(de)(de)(de)(de)(de)方(fang)法(fa)對(dui)(dui)PCHE進行建模(mo),將結果(guo)與(yu)實(shi)驗(yan)數(shu)(shu)(shu)(shu)據進行對(dui)(dui)比,見表5,可(ke)以看出誤(wu)差(cha)不(bu)(bu)大(da),證明了(le)(le)(le)(le)分段(duan)設(she)計方(fang)法(fa)的(de)(de)(de)(de)(de)(de)(de)(de)(de)可(ke)靠(kao)性(xing)。范世望等人(ren)[74]采用(yong)(yong)(yong)(yong)(yong)流(liu)(liu)體(ti)-固體(ti)強耦合傳熱(re)(re)(re)(re)(re)(re)(re)(re)模(mo)型(xing)(xing)(xing)(xing)對(dui)(dui)SCO2再壓(ya)縮布雷頓(dun)(dun)循(xun)(xun)環(huan)(huan)中(zhong)(zhong)的(de)(de)(de)(de)(de)(de)(de)(de)(de)PCHE在(zai)(zai)(zai)(zai)穩態(tai)(tai)和(he)(he)(he)(he)(he)(he)非穩態(tai)(tai)工(gong)況(kuang)下(xia)運(yun)行的(de)(de)(de)(de)(de)(de)(de)(de)(de)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)能力(li)(li)(li)(li)(li)進行研究(jiu),得(de)到(dao)(dao)在(zai)(zai)(zai)(zai)穩態(tai)(tai)工(gong)況(kuang)下(xia)模(mo)擬(ni)符(fu)合工(gong)況(kuang),在(zai)(zai)(zai)(zai)非穩態(tai)(tai)工(gong)況(kuang)下(xia)由于(yu)冷(leng)熱(re)(re)(re)(re)(re)(re)(re)(re)通(tong)(tong)(tong)(tong)道(dao)(dao)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)不(bu)(bu)均勻可(ke)能會導致部(bu)分流(liu)(liu)體(ti)偏離超(chao)臨(lin)界狀(zhuang)態(tai)(tai),尤其是(shi)邊緣和(he)(he)(he)(he)(he)(he)出口附(fu)近,所以設(she)計時(shi)(shi)(shi)需要(yao)考慮好(hao)PCHE內部(bu)傳熱(re)(re)(re)(re)(re)(re)(re)(re)不(bu)(bu)均的(de)(de)(de)(de)(de)(de)(de)(de)(de)問(wen)題。史陽等人(ren)[75]采用(yong)(yong)(yong)(yong)(yong)PCHE作為SCO2布雷頓(dun)(dun)循(xun)(xun)環(huan)(huan)的(de)(de)(de)(de)(de)(de)(de)(de)(de)回(hui)(hui)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi)和(he)(he)(he)(he)(he)(he)冷(leng)卻器(qi)(qi)(qi)(qi),對(dui)(dui)此進行了(le)(le)(le)(le)測試以及費(fei)用(yong)(yong)(yong)(yong)(yong)分析,以1MW換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi)為例,發(fa)現(xian)投(tou)資費(fei)用(yong)(yong)(yong)(yong)(yong)遠高(gao)于(yu)運(yun)行費(fei)用(yong)(yong)(yong)(yong)(yong),且隨著SCO2質量(liang)流(liu)(liu)量(liang)的(de)(de)(de)(de)(de)(de)(de)(de)(de)增加,回(hui)(hui)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi)總體(ti)費(fei)用(yong)(yong)(yong)(yong)(yong)也(ye)隨之(zhi)增加,而(er)(er)冷(leng)卻器(qi)(qi)(qi)(qi)的(de)(de)(de)(de)(de)(de)(de)(de)(de)總體(ti)費(fei)用(yong)(yong)(yong)(yong)(yong)則呈現(xian)先下(xia)降后上升(sheng)(sheng)的(de)(de)(de)(de)(de)(de)(de)(de)(de)趨(qu)勢。劉凱等人(ren)[76]采用(yong)(yong)(yong)(yong)(yong)數(shu)(shu)(shu)(shu)值模(mo)擬(ni)方(fang)法(fa)探究(jiu)SCO2在(zai)(zai)(zai)(zai)PCHE中(zhong)(zhong)的(de)(de)(de)(de)(de)(de)(de)(de)(de)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)特性(xing),發(fa)現(xian)當(dang)保持(chi)(chi)壓(ya)力(li)(li)(li)(li)(li)和(he)(he)(he)(he)(he)(he)流(liu)(liu)量(liang)一(yi)(yi)定時(shi)(shi)(shi)改(gai)變冷(leng)側入(ru)口溫(wen)度(du)對(dui)(dui)PCHE熱(re)(re)(re)(re)(re)(re)(re)(re)功(gong)率(lv)的(de)(de)(de)(de)(de)(de)(de)(de)(de)影(ying)響(xiang)比熱(re)(re)(re)(re)(re)(re)(re)(re)側大(da),而(er)(er)若要(yao)改(gai)變熱(re)(re)(re)(re)(re)(re)(re)(re)通(tong)(tong)(tong)(tong)道(dao)(dao)的(de)(de)(de)(de)(de)(de)(de)(de)(de)壓(ya)力(li)(li)(li)(li)(li)或(huo)流(liu)(liu)量(liang)對(dui)(dui)PCHE熱(re)(re)(re)(re)(re)(re)(re)(re)功(gong)率(lv)的(de)(de)(de)(de)(de)(de)(de)(de)(de)影(ying)響(xiang)比改(gai)變冷(leng)通(tong)(tong)(tong)(tong)道(dao)(dao)的(de)(de)(de)(de)(de)(de)(de)(de)(de)大(da)。吳家(jia)榮等人(ren)[77]利用(yong)(yong)(yong)(yong)(yong)有(you)限元方(fang)法(fa)對(dui)(dui)PCHE的(de)(de)(de)(de)(de)(de)(de)(de)(de)應力(li)(li)(li)(li)(li)進行分析,得(de)到(dao)(dao)由于(yu)壓(ya)力(li)(li)(li)(li)(li)和(he)(he)(he)(he)(he)(he)溫(wen)度(du)的(de)(de)(de)(de)(de)(de)(de)(de)(de)共同(tong)作用(yong)(yong)(yong)(yong)(yong)使(shi)芯(xin)體(ti)受到(dao)(dao)應力(li)(li)(li)(li)(li),可(ke)通(tong)(tong)(tong)(tong)過(guo)增大(da)半(ban)圓(yuan)截(jie)面(mian)尖角(jiao)(jiao)通(tong)(tong)(tong)(tong)道(dao)(dao)的(de)(de)(de)(de)(de)(de)(de)(de)(de)圓(yuan)弧半(ban)徑(jing)(jing)來減(jian)小(xiao)應力(li)(li)(li)(li)(li)。丁源等人(ren)[78]設(she)計了(le)(le)(le)(le)1MW SCO2光(guang)熱(re)(re)(re)(re)(re)(re)(re)(re)發(fa)電系(xi)統(tong)的(de)(de)(de)(de)(de)(de)(de)(de)(de)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi),主要(yao)比較了(le)(le)(le)(le)直(zhi)(zhi)(zhi)型(xing)(xing)(xing)(xing)和(he)(he)(he)(he)(he)(he)翼型(xing)(xing)(xing)(xing)兩(liang)種(zhong)翅片(pian),得(de)到(dao)(dao)在(zai)(zai)(zai)(zai)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)量(liang)、水力(li)(li)(li)(li)(li)直(zhi)(zhi)(zhi)徑(jing)(jing)、通(tong)(tong)(tong)(tong)道(dao)(dao)數(shu)(shu)(shu)(shu)量(liang)均相同(tong)時(shi)(shi)(shi),翼型(xing)(xing)(xing)(xing)比直(zhi)(zhi)(zhi)型(xing)(xing)(xing)(xing)換(huan)(huan)熱(re)(re)(re)(re)(re)(re)(re)(re)器(qi)(qi)(qi)(qi)的(de)(de)(de)(de)(de)(de)(de)(de)(de)性(xing)能都要(yao)好(hao)。


image.png

表5分段設計結(jie)(jie)果和實驗結(jie)(jie)果對比


07


總結


SCO2布(bu)雷(lei)頓循(xun)環(huan)(huan)作為一種新興的發電循(xun)環(huan)(huan)受到(dao)了廣泛(fan)研究,主要包括以(yi)下幾(ji)部分(fen):


(1)將用于布(bu)雷(lei)頓循(xun)環的工(gong)質進行比較,得到(dao)SCO2與布(bu)雷(lei)頓循(xun)環最(zui)合適,不(bu)僅效率高且安全綠色無毒(du)。


(2)基于光(guang)熱發電系統比較了SCO2布雷頓循(xun)環(huan)(huan)與水(shui)蒸氣朗(lang)(lang)肯循(xun)環(huan)(huan)和SCO2朗(lang)(lang)肯循(xun)環(huan)(huan)的效率,得到SCO2布雷頓循(xun)環(huan)(huan)與光(guang)熱發電結(jie)合(he)更具有優勢(shi)。


(3)基于光熱發電系(xi)(xi)統比較了(le)SCO2布雷頓循環(huan)的(de)結構,得到再壓縮(suo)循環(huan)既簡單(dan)又(you)高(gao)效(xiao),更適合光熱發電系(xi)(xi)統。


(4)對基于光熱發(fa)電系統的(de)SCO2布雷(lei)頓循環的(de)關鍵參數進行了優(you)化(hua),發(fa)現參數之間存在耦合關系,需要均達到最優(you)才可使循環效率(lv)達到最佳。


(5)對(dui)SCO2布雷(lei)頓循環(huan)的(de)(de)設備(bei)(bei)進行了研(yan)究,有透平、壓(ya)縮機和(he)換熱器,其(qi)中PCHE作(zuo)為(wei)一(yi)種新型的(de)(de)換熱器值得多關注。但目(mu)前看來結(jie)合光(guang)熱發電系統對(dui)SCO2布雷(lei)頓循環(huan)設備(bei)(bei)分析的(de)(de)較(jiao)少(shao),后續可多研(yan)究。


本(ben)文作者 | 李光霽 付(fu)亞(ya)男


來(lai)源 | 汽輪機技術(shu)


參考資料:


[1] KATO Y,NITAWAKI T,MUTO Y.Medium temperature carbon dioxide gas turbine reactor[J].Nuclear Engineering and Design,2004,230(1-3):195-207.


[2] SANCHEZ D,DE ESCALONA J M,CHACARTEGUI R,et al.Acomparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology[J].Journal of Power Sources,2011,196(9):4347-4354.


[3] UUSITALO A,AMELI A,TURUNEN-SAARESTI T.Thermodynamic and turbomachinery design analysis of supercritical Brayton cycles for exhaust gas heat recovery[J].Energy,2019,167:60-79.


[4] COCO-ENRíQUEZ L,MU?OZ-ANTóN J,MARTíNEZ-VALJ.New text comparison between CO2and other supercritical working fluids (ethane,Xe,CH4and N2) in line-focusing solar power plants coupled to supercritical Brayton power cycles[J].International Journal of Hydrogen Energy,2017,42(28):17611-17631.


[5] NEISES T,TURCHI C.A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications[J].Energy Procedia,2014,49:1187-1196.


[6] PARK S,KIM J,YOON M,et al.Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2Brayton power cycle[J].Applied Thermal Engineering,2018,130:611-623.


[7] HANAK D P,MANOVIC V.Calcium looping with supercritical CO2cycle for decarbonisation of coal-fired power plant[J].Energy,2016,102:343-353.


[8] 曹春輝(hui).基于塔式熱發電系統的超臨界(jie)二氧化碳布雷頓循環優化與(yu)分析[D].天(tian)津(jin):天(tian)津(jin)大學,2018.


[9] 吳毅(yi),王(wang)(wang)佳(jia)瑩,王(wang)(wang)明坤,等(deng).基于(yu)超(chao)臨界CO2布雷頓循環的塔式太陽能(neng)集熱(re)發電系(xi)統[J].西安交(jiao)通大學(xue)學(xue)報,2016,50(5):108-113.


[10] 楊(yang)雪.基于超臨界CO2布(bu)雷頓(dun)循環的塔式(shi)太陽能(neng)熱電(dian)站的熱性能(neng)分析[D].北京:華北電(dian)力大(da)學,2018.


[11] TURCHI C S,MA Z,DYREBY J.Supercritical carbon dioxide power cycle configurations for use in concentrating solar power systems[C]//Turbo Expo:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2012,44717:967-973.


[12] ZHANG X-R,YAMAGUCHI H,UNENO D,et al.Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide[J].Renewable Energy,2006,31(12):1839-1854.


[13] NIU X-D,YAMAGUCHI H,IWAMOTO Y,et al.Optimal arrangement of the solar collectors of a supercritical CO2-based solar Rankine cycle system[J].Applied thermal engineering,2013,50(1):505-510.

[14] 張玉偉.太陽能集熱(re)(re)器(qi)中超臨界CO2傳熱(re)(re)行為及朗肯循環(huan)[D].大(da)連(lian)(lian):大(da)連(lian)(lian)理(li)工大(da)學,2012.


[15] 向沖.以(yi)超臨界CO2為工質(zhi)的朗肯循環及傳熱(re)模擬(ni)[D].大(da)連:大(da)連理(li)工大(da)學,2011.


[16] DOSTAL V,DRISCOLL M J,HEJZLAR P.A supercritical carbon dioxide cycle for next generation nuclear reactors[R].MIT-ANP-TR-100,2004.


[17] NEISES T W,TURCHIiC S.Supercritical CO2power cycles:design considerations for concentrating solar power[C]//4th International Symposium-Supercritical CO2Power Cycles,Pittsburgh,PA,Sept.2014:9-10.


[18] AL-SULAIMAN F A,ATIF M.Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower[J].Energy,2015,82:61-71.


[19] PADILLA R V,TOO Y C S,BENITO R,et al.Exergetic analysis of supercritical CO2Brayton cycles integrated with solar central receivers[J].Applied Energy,2015,148:348-365.


[20] BINOTTI M,ASTOLFI M,CAMPANARI S,et al.Preliminary assessment of SCO2power cycles for application to CSP solar tower plants[J].Energy Procedia,2017,105:1116-1122.


[21] WANG K,LI M-J,GUO J-Q,et al.A systematic comparison of different S-CO2Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants[J].Applied energy,2018,212:109-121.


[22] 王雅倩(qian).塔式太陽能與超臨界二氧(yang)化(hua)碳布雷頓循環集成(cheng)系統的分析優化(hua)[D].北(bei)京(jing):華北(bei)電力(li)大學,2019.


[23] 李佩蔚.SCO2布雷頓(dun)循環(huan)系統構建及在太陽能發電系統中的(de)應用(yong)[D].南京:東南大(da)學(xue),2020.


[24] 袁曉(xiao)旭(xu),張(zhang)小波.光熱電站采用超臨界(jie)二氧化碳(tan)布雷(lei)頓循環發電系統論證(zheng)[J].東方汽輪機,2021(1):33-38.


[25] TURCHI C S,MA Z,NEISES T W,et al.Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems[J].Journal of Solar Energy Engineering,2013,135(4).


[26] MOHAGHEGHI M,KAPAT J.Thermodynamic optimization of recuperated S-CO2Brayton cycles for solar tower applications[C]//Turbo Expo:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2013,55133:V002T07A013.


[27] 朱(zhu)含慧(hui),王坤,何雅(ya)玲.直接(jie)式(shi)S-CO2塔式(shi)太陽能熱(re)(re)發電系統光-熱(re)(re)-功(gong)一(yi)體(ti)化熱(re)(re)力學(xue)分析(xi)[J].工程(cheng)熱(re)(re)物(wu)理(li)學(xue)報,2017,38(10):2045-2053.


[28] IVERSON B D,CONBOY T M,PASCH J J,et al.Supercritical CO2Brayton cycles for solar-thermal energy[J].Applied Energy,2013,111:957-970.


[29] 周昊,裘閏超,李亞(ya)威.基于(yu)超臨界CO2布雷頓再壓縮循環的(de)塔式太陽(yang)能光熱系統(tong)關鍵參數的(de)研(yan)究[J].中(zhong)國電機(ji)工程學報,2018,38(15):4451-4458,645.


[30] 陳建生,梁穎宗,羅向龍(long),等.塔式太(tai)陽(yang)能(neng)-超臨界CO2發電系統集成與優化[J].南方能(neng)源建設,2020,7(1):1-7.


[31] ABID M,KHAN M S,et al.Comparative energy,exergy and exergo-economic analysis of solar driven supercritical carbon dioxide power and hydrogen generation cycle[J].International Journal of Hydrogen Energy,2020,45(9):5653-5667.


[32] GARG P,KUMAR P,SRINIVASAN K.Supercritical carbon dioxide Brayton cycle for concentrated solar power[J].The Journal of Supercritical Fluids,2013,76:54-60.


[33] 何欣欣,薛志恒,等.間接式(shi)超臨界二(er)氧化(hua)碳塔式(shi)太陽能熱發電系統仿真優(you)化(hua)[J].熱力(li)發電,2019,48(7):53-58.


[34] 韓中合,趙林(lin)飛,韓旭.直接(jie)式超臨界二氧化碳(tan)再壓(ya)縮(suo)塔式光熱發電系(xi)統關鍵參(can)數優化[J].熱力(li)發電,2021,50(10):21-29.


[35] 王智,閆銳鳴,等.再壓縮S-CO2塔式光熱發電(dian)系統模擬及參數優化[J].汽輪機技術,2021,63(6):422-426.


[36] 沈涵(han)孜,馮靜,聶會建,等.基于塔式光熱的S-CO2布雷頓循環關(guan)鍵參(can)數優化[J].能(neng)(neng)源與節(jie)能(neng)(neng),2022(3):7-11.


[37] 王雪(xue),孫恩(en)慧,等.超臨界二氧化碳循環關鍵部件成本模型研究進展[J].中(zhong)國電(dian)機工程(cheng)學報,2022,42(2):650-663.


[38] MOORE J,CICHS,DAY M,et al.Commissioning of a 1 MWe supercritical CO2test loop[C]//The 6th International Supercritical CO2Power Cycles Symposium.2018.


[39] MOORE J,DAY M,CICH S,et al.Testing of a 10MWe supercritical CO2turbine[C]//Proceedings of the 47th Turbomachinery Symposium.Turbomachinery Laboratory,Texas A&MEngineering Experiment Station,2018.


[40] LEE J,LEE J I,AHN Y,et al.Design methodology of supercritical CO2Brayton cycle turbomachineries[C]//Turbo Expo:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2012,44717:975-983.


[41] SCHMITT J,WILLIS R,AMOS D,et al.Study of a supercritical CO2turbine with TIT of 1350 K for Brayton cycle with 100 MWclass output:aerodynamic analysis of stage 1 vane[C]//Turbo Expo:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2014,45660:V03BT36A019.


[42] 劉長春,彭建強(qiang),張(zhang)宏濤,等.超臨界CO2透平(ping)選材初探[J].東方(fang)汽輪(lun)機(ji),2021(2):50-53,67.


[43] 張少(shao)鋒,趙磊,陳健(jian),等.超臨界二氧化碳布雷頓循環發電系(xi)統,CN212614894U[P/OL].


[44] 王鵬亮(liang),成科,金鼎銘.超臨界二氧(yang)化(hua)碳布雷頓循環(huan)系(xi)統,CN216278058U[P/OL].


[45] CHO J,CHOI M,et al.Development of the turbomachinery for the supercritical carbon dioxide power cycle[J].International Journal of Energy Research,2016,40(5):587-599.


[46] ODABAEE M,SAURET E,HOOMAN K.CFD simulation of a supercritical carbon dioxide radial-inflow turbine,comparing the results of using real gas equation of estate and real gas property file;proceedings of the Applied Mechanics and Materials,F,2016[C].Trans Tech Publ.


[47] 周(zhou)奧錚,李雪松,任曉棟,等.基于向心透平(ping)效(xiao)率預測的超(chao)臨界二氧化碳循環(huan)的熱力學分析(xi)[J].工程熱物理(li)學報(bao),2020,41(12):2891-2899.


[48] 王春陽.70MW級超(chao)臨界二氧化碳閉式布雷頓循(xun)環向心透(tou)平設(she)計(ji)分(fen)析[D].哈(ha)爾濱:哈(ha)爾濱工業大學,2020.


[49] 王巧(qiao)珍.7.5MW超臨界(jie)二(er)氧(yang)化碳向心透(tou)平氣動設計及性能(neng)分析[D].北京:華北電力大學(xue),2021.


[50] 呂國川,王曉放,祝暢,等.MW級超臨(lin)界二氧化碳向心渦輪(lun)設計及分析[J].工程熱(re)物(wu)理學(xue)報,2022,43(1):67-73.


[51] 趙攀,溫(wen)玉聰,等.超臨界二氧化碳向(xiang)心(xin)透平設(she)計與熱流固耦合研究[J].西安(an)交通大學(xue)學(xue)報,2022,56(11):83-94.


[52] UTAMURA M,HASUIKE H,et al.Demonstration of supercritical CO2closed regenerative Brayton cycle in a bench scale experiment[C]//Turbo Expo:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2012,44694:155-164.


[53] RINALDI E,PECNIK R,COLONNA P.Steady state CFD investigation of a radial compressor operating with supercritical CO2[C]//Turbo Expo:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2013,55294:V008T34A008.


[54] BEHAFARID F,PODOWSKI M Z.Modeling and computer simulation of centrifugal CO2compressors at supercritical pressures[J].Journal of Fluids Engineering,2016,138(6).


[55] SHAO W,WANG X,YANG J,et al.Design parameters exploration for supercritical CO2centrifugal compressors under multiple constraints[C]//Turbo Expo:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2016,49873:V009T36A008.


[56] Du Y,Yang C,Wang H,et al.One-dimensional optimisation design and off-design operation strategy of centrifugal compressor for supercritical carbon dioxide Brayton cycle[J].Applied Thermal Engineering,2021,196:117318.


[57] 劉(liu)朝陽(yang),童志(zhi)庭,鞠鵬飛,等.葉頂間隙對超臨界二氧化碳(tan)離心壓(ya)縮機(ji)(ji)氣動性能影響研究[J].汽輪機(ji)(ji)技術(shu),2022,64(3):183-186,176.


[58] 朱(zhu)玉銘,梁(liang)世(shi)強,等.超(chao)臨界CO2兩(liang)級離心式壓縮機實驗(yan)研究[J].中國電(dian)機工程學報(bao),2022,42(24):8933-8942.


[59] 曹潤,李志剛(gang),李軍,等.具有密封結(jie)構的超臨界二氧化碳離心壓縮機特性研究(jiu)[J].西安交(jiao)通大學學報,2022,56(4):127-137.


[60] 尚(shang)鵬(peng)旭,童志庭(ting),鞠(ju)鵬(peng)飛(fei),等.S-CO2離心壓(ya)縮機(ji)不同(tong)進口條(tiao)件流場(chang)分析[J].工程熱物理學報,2023,44(4):968-976.


[61] 王均(jun),孫旭(xu),青春.印刷板式換(huan)熱器在荔灣3-1氣田中的應用[J].油氣田地面工程(cheng),2012,31(12):101-102.


[62] SERRANO I,CANTIZANO A,LINARES J,et al.Modeling and sizing of the heat exchangers of a new supercritical CO2Brayton power cycle for energy conversion for fusion reactors[J].Fusion Engineering and Design,2014,89(9-10):1905-1908.


[63] 李東(dong)芳.高壓換熱器在大型海(hai)上(shang)固定平臺應用的選型研究[J].石油(you)和化工設備,2017,20(6):58-61.


[64] NIKITIN K,KATO Y,NGO L.Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2experimental loop[J].International Journal of refrigeration,2006,29 (5):807-814.


[65] SAEED M,BERROUK A S,SIDDIQUI M S,et al.Effect of printed circuit heat exchanger's different designs on the performance of supercritical carbon dioxide Brayton cycle[J].Applied Thermal Engineering,2020,179:115758.


[66] NGO T L,KATO Y,NIKITIN K,et al.Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles[J].Experimental Thermal and Fluid Science,2007,32(2):560-570.


[67] KRUIZENGA A,ANDERSON M,FATIMA R,et al.Heat transfer of supercritical carbon dioxide in printed circuit heat exchanger geometries[J].Journal of Thermal Science and Engineering Applications,2011,3(3).


[68] KRUIZENGA A,LI H,ANDERSON M,et al.Supercritical carbon dioxide heat transfer in horizontal semicircular channels[J].Journal of Heat transfer,2012,134(8).


[69] MOHAMMED R H,ALSAGRI A S,WANG X.Performance improvement of supercritical carbon dioxide power cycles through its integration with bottoming heat recovery cycles and advanced heat exchanger design:a review[J].International Journal of Energy Research,2020,44(9):7108-7135.


[70] 李磊,楊(yang)劍,等.印(yin)刷電路(lu)板通道(dao)的高溫傳熱(re)和阻力特性研究[J].工程熱(re)物理學報,2014,35(5):931-934.


[71] 李凈松,張(zhang)巍,王聰,等.回熱(re)器尺(chi)寸(cun)對再壓縮式超(chao)臨界二(er)氧化碳布雷頓循環特性的影響[C]//第十六(liu)屆全國反(fan)應堆熱(re)工流體學術(shu)會議暨中核核反(fan)應堆熱(re)工水力技術(shu)重點實驗室2019年(nian)學術(shu)年(nian)會論文(wen)集.2019.


[72] 高毅超,夏文凱(kai),等.管徑(jing)和轉折角對Z型PCHE換熱及(ji)壓降(jiang)影(ying)響的研究[J].熱能動力工程,2019,34(2):94-100.


[73] 徐婷婷,趙紅霞,韓(han)吉田,等.結(jie)構(gou)和工況參數對印(yin)刷電路板式換熱(re)器性(xing)能的影響[J].熱(re)力發電,2020,49(12):28-35.


[74] 范(fan)世望,朱郁波,周璐,等(deng).基于開(kai)源(yuan)求(qiu)解工(gong)具的超臨界二(er)氧(yang)化碳印刷電路板(ban)式(shi)換(huan)熱器流動(dong)傳熱特性數值研究[J].科學技術與工(gong)程,2021,21(27):11587-11594.


[75] 史陽,周敬之(zhi),淮秀蘭,等.超(chao)臨界CO2印刷電(dian)路板式換熱器實驗研究及(ji)費用評估[J].中國(guo)電(dian)機工程學報,2021,41(19):6529-6537.


[76] 劉(liu)凱(kai),明楊,胡朝營,等.印刷(shua)電路板換熱器中S-CO2換熱特性數值分(fen)析(xi)[J].哈爾濱(bin)工程大學學報(bao),2021,42(12):1777-1785.


[77] 吳家榮(rong),李紅智,楊玉,等.超臨界(jie)二氧化碳動力(li)循(xun)環中印刷(shua)電路板換熱器(qi)芯(xin)體機械(xie)應(ying)力(li)和(he)熱應(ying)力(li)耦合(he)分析[J].中國電機工程學報,2022,42(2):640-650.


[78] 丁源,童自翔,王文(wen)奇,等.超臨界二氧化碳印(yin)刷電路(lu)板式(shi)換熱器設計及應用研究[J].工程熱物理學報,2022,43(5):1351-1356.

最新評論
0人參與
馬上參與